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Optimizing Spaced Repetition Schedule by Capturing
the Dynamics of Memory

Jingyong Su , Junyao Ye , Liqiang Nie , Senior Member, IEEE, Yilong Cao , and Yongyong Chen

Abstract—Spaced repetition, namely, learners review items in a
given schedule, has been proven powerful for memorization and
practice of skills. Most current spaced repetition methods focus
on either predicting student recall or designing an optimal review
schedule, thus omitting the integrity of the spaced repetition system.
In this work, we propose a novel spaced repetition schedule frame-
work by capturing the dynamics of memory, which alternates mem-
ory prediction and schedule optimization to improve the efficiency
of learners’ reviews. First, the framework collects logs from stu-
dents’ reviews and builds memory models with Markov property
to capture the dynamics of memory. Then, the spaced repetition
optimization is transformed a stochastic shortest path problem
and solved via the value iteration method. We also construct a
new benchmark dataset for spaced repetition, which is the first
to contain time-series information during learners’ memorization.
Experimental results on the collected data from the real world
and the simulated environment demonstrate that the proposed
approach reduces 64% error and 17% cost in predicting recall rates
and optimizing schedules compared to several baselines. We have
publicly released the dataset containing 220 million rows and codes
used in this paper at: https://github.com/maimemo/SSP-MMC-
Plus.

Index Terms—Language learning, Markov decision process,
recurrent neural networks, time-series features, spaced repetition.

I. INTRODUCTION

M EMORY plays an important role in learning. To preserve
long-term memory efficiently, students need to regularly

review what they have learned over a lengthy period of time, a
technique known as spaced repetition. The spacing effect and
forgetting curve, which were identified in the basic memory
experiment of [1], are the inspiration for spaced repetition.
Researchers have worked extensively on optimizing spaced
repetition to predict learners’ memory and schedule efficient
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review tasks. There is an optimal review schedule, according
to meta-analyses of review intervals in [2], [3]. Additionally,
a number of studies verify that the students of medicine [4],
statistics [5], history [6] all benefit significantly from the use of
spaced repetition.

With more students studying online on e-learning platforms, it
is feasible to collect extensive learning data. Based on that, many
efforts have been dedicated to how to create intelligent tutoring
systems via data mining and machine learning techniques [7],
[8]. One of the system’s main functions is to schedule learning
and review tasks for learners. In particular, Settle and Meeder [9]
develop a trainable memory prediction model that aids learners
in deciding which skills require review. Rafferty et al. [10]
formulate instruction as a partially observable Markov decision
process (POMDP) planning problem, which is often used in
sequential optimization [11]. Meanwhile, they explore the opti-
mal strategies with deep reinforcement learning (DRL) methods,
which are powerful for making sequential decision [12], [13].
These techniques increase learners’ effectiveness and engage-
ment, and therefore, are quite practical in real-world scenarios.

Previous research, however, has either focused on predicting
learners’ memory or designing optimal scheduling. The lack
of optimal scheduling in predicting memory prevents it from
improving the learners’ efficiency directly; the lack of predicting
memory in optimal scheduling makes it challenging to fit the
real learners. Furthermore, the works of predicting memory [9],
[14], [15] focus more on the statistical than the time-series
features of learners’ memory behaviors. Many samples that
are noticeably different in time-series cannot be differentiated.
Therefore, it hampers these memory models from correctly sim-
ulating learner memory (see ”Related Work” at Section II-A).
The accuracy of several algorithms used to schedule reviews
based on such models is similarly constrained by the lack of
time-series features. Additionally, the action spaces of previous
DRL approaches [16], [17], [18] are rigid, making it difficult for
students to supplement new learning stuff.

This paper investigates how to predict learners’ memory based
on time-series behavioral data during spaced repetition and
uses it as a basis to build a scheduling algorithm to optimize
the spaced repetition schedule. We collect a dataset containing
time-series features of learners’ memory behaviors and propose
a novel framework for spaced repetition, as shown in Fig. 1,
by processing memory prediction and schedule optimization
alternately to improve the efficiency of learners’ review. In
terms of memory prediction, we establish DHP-HLR (Difficulty
Halflife P(recall) Halflife-Regression) model inspired by the
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Fig. 1. The framework of our method is separated into two main parts: local
in green and remote in red. Each time a user examines a word on the remote, the
review events are locally recorded. After the learner has finished all of the day’s
reviews, the log is submitted to the spaced repetition log collection on the remote.
Then, logs will be collectively processed to extract the time-series features for
training the memory prediction model. Then the optimizing algorithm searches
for the optimal spaced repetition schedule based on the dynamics of memory
captured by the memory model. Periodically, the local will be updated with
the optimal policy and model parameters. The local spaced repetition scheduler
determines the next review date for words, while the local memory state predictor
determines the memory state for each review.

two-component model of long-term memory [19] and GRU-
HLR combining gated recurrent unit (GRU) [20] network and
halflife regression (HLR) model [9]. Meanwhile, the state vari-
ables of DHP-HLR and the hidden layer variables of the GRU
network capture the potential memory states and dynamics. We
optimize the spaced repetition schedule based on memory mod-
els and a stochastic dynamic programming method to minimize
learners’ memory costs on each item. It is found that for predict-
ing memory, the use of time-series features effectively reduces
prediction error while capturing memory dynamics. For review
schedule, the proposed scheduling algorithm SSP-MMC based
on the time-series model, combined with stochastic dynamic
programming to minimize the memory cost, outperforms other
state-of-the-art methods. To summarize, the main contributions
of this paper are:
� We propose a novel spaced repetition schedule framework

by capturing the dynamics of memory, which associates
memory prediction with optimal scheduling to improve the
efficiency of learners’ reviews.

� To the best of our knowledge, this is the first study to apply
the time-series features to model long-term memory, mak-
ing the model trained directly from the memory behaviors
of learners.

� We build and publicly release our spaced repetition log
dataset with 220 million rows, the first to include time-
series data.

This paper is a substantial extension of our previous confer-
ence paper A Stochastic Shortest Path Algorithm for Optimizing
Spaced Repetition Scheduling [21], where we proposed DHP-
HLR model to predict memory and SSP-MMC algorithm to
optimize the schedule. Compared with the conference version,
we add GRU-HLR to capture memory dynamics and reduce
memory prediction error while streamlining manual intervention

in adjusting model parameters. The extended experiments com-
pare more benchmark memory models and analyze the causes
of error prediction. Furthermore, we discover that the proposed
SSP-MMC algorithm is well compatible with the hidden layer
state of GRU, which may be employed as state spaces in the
Markov decision-making process.

The rest of this paper is organized as follows. A brief review of
related work is reported in Section II. The proposed DHP-HLR
and GRU-HLR are elaborated in Section III. The proposed
SSP-MMC algorithm is presented in Section IV. Extensive
experimental results and discussions are reported in Section V,
and a conclusion is given in Section VI.

II. RELATED WORK

Relevant prior work includes studies of memory models and
optimizing schedules.

A. Human Memory Models

There are many studies on modeling human memory to
improve teaching. Ebbinghaus [1] first proposed the forgetting
curve to illustrate memory decay if no review. Anderson [14]
proposed ACT-R theory, whose declarative memory module
assumes that each review will produce a forgetting curve. These
models do not distinguish the results of review (remembered
or forgotten), and only consider the number of reviews and the
interval between reviews [22]. Mozer et al. [15] introduced
the multiscale context model, which combines two cognitive
theories and divides unsuccessful and successful recall, where
some weights are hand-picked. Settle and Meeder [9] used the
machine learning technique and exponential forgetting curve to
predict student recall rates. Their feature sets include the number
of times a student correctly and incorrectly recall but dismiss the
time-series information in the history of review.

B. Optimization Schedules

Hand-Crafted Methods. Prior to the mass adoption of e-
learning, traditional spaced repetition schedules were the main-
stream. One of the first schedules was a geometric progression
with a common ratio of five, introduced by Pimsleur [23].
Leitner [24] proposed a heuristic schedule based on physical
boxes, where it controls the reviews’ frequency of different
flashcards by moving them to boxes of various sizes. By contrast,
SuperMemo was the original digital spaced repetition algorithm,
receiving users’ interactions to update its schedule. Its program
aims to keep users’ forgetting rate at 5% [25], but there is no
proof that it is optimal. These schedules rely on hand-crafted
rules to determine spacing intervals for review and have less
adaptability and theoretical guarantees.

Stochastic Control. Recently, Reddy et al. [26] proposed a
queueing network model to maximize the learning speed for
the Leitner system, which was constrained and not tested for
accuracy. Tabibian et al. [27] introduced marked time-series
point processes to represent review events in spaced repeti-
tion and designed an algorithm named MEMORIZE based on
stochastic optimal control to make a tradeoff between recall
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probability and the number of reviews. In their memory model,
the forgetting rate dynamics were not time-varying. Upadhyay
et al. [28] validated MEMORIZE in an actual interventional
experiment. Hunziker et al. [29] used a greedy algorithm to
maximize the average recall probability during the learning
process, where they assumed recall and forgetting had the same
impact on memory. These methods imposed strict conditions on
their human memory models constraining their generality.

Deep Reinforcement Learning. Reddy et al. [16] proposed
a model-free DRL method to maximize the expected number
of items recalled. Sinha [17] improved the DRL method by
using Long Short Term Memory (LSTM) [30] neural network
to predict reward. These studies assumed that the intervals be-
tween each adjacent review are constant and oversimplified. To
consider the varying internals in the real world, Yang et al. [18]
utilized Time-LSTM to estimate the recall probabilities with
time interval input. Nioche et al. [31] proposed a model-based
planning approach at the level of individual learners and items.
These approaches formulated scheduling of spaced repetition
as a POMDP, encoding the memory of all material into one
single state variable, making it hard to introduce new stuff
during the learning period. Furthermore, it is impractical that
the agent could only learn one item per session in their simu-
lation environments. Upadhyay et al. [32] introduced a deep
reinforcement learning algorithm based on the policy gradient
that encoded the history of all items’ reviews into a hidden
state and allowed multiple items per session. But their method
required determining the set of items before training, which is
not convenient for students who need to import new items during
the learning process.

III. MEMORY MODEL BASED ON TIME-SERIES

The time-series data in spaced repetition and the memory
model known as halflife regression (HLR) [9] are briefly in-
troduced in this section. Then, we apply a manually created
time-series model and a recurrent neural network to combine
time-series features with the HLR.

A. Time-Series Data in Spaced Repetition

Inspired by work of [27], we use a quadruplet to represent
each review event:

e := (u,w,Δt, r), (1)

where e is the review event that the learner u recalls item w
successfully (r = 1) or unsuccessfully (r = 0) at interval Δt
since last review. Based on that, we can concatenate (Δt, r) of
each review to obtain sequential features:

ei := (u,w,Δt1:i−1, r1:i−1,Δti, ri) (2)

whereΔt1:i−1 denotes the intervals between each review before
the ith review and r1:i−1 is the historical responses of reviews.
The samples are shown in Table I.

The review event is defined to include the whole reviewing
history of any student for any item. However, in the aforemen-
tioned review event, recall is binary (i.e., a user either recalls or
forgets a word). The recall probability needs to be obtained to

TABLE I
DATASET SAMPLES

Fig. 2. The distributions of P(recall) and difficulty. The easiest words with
P(recall) > 0.85 are assigned d = 1 and the hardest words P(recall) ≤ 0.45 are
assigned d = 10. The difficulties of the remaining words are assigned from 2 to
9 by dividing remaining interval of P(recall) equaly into eight parts.

TABLE II
ILLUSTRATION OF WORDS’ DIFFICULTY

capture memory dynamics. The recall rate is defined by [9] as
the percentage of times a word is correctly recalled throughout
a review session, implying that different memory actions for
the same word during a session are independent. In practice,
the first recall event has a considerable impact on a learner’s
memory state and subsequent memories throughout the day. We,
therefore, propose a more appropriate measure for recall ratio.
We use nr=1/N in a group of N individuals learning word w as
the recall probability p:

ei := (w,Δt1:i−1, r1:i−1,Δti, pi, N). (3)

By controlling the w, Δt1:i−1 and r1:i−1, we can plot the
p for each Δt to obtain the forgetting curve. When N is big
enough, the ratio nr=1/N gets close to the recall probability.
However, there are almost 100,000 words in MaiMemo, and the
behavior events collected for each word in different time-series
are sparse. We need to group words to make a tradeoff between
distinguishing different words and alleviating data sparsity.
Since we are interested in the forgetting curve, words’ difficulties
significantly influence the forgetting slope. As a result, we try to
use the recall ratio the next day after learning them for the first
time as a criterion for classifying the difficulties of words. The
distribution of the recall ratio is shown in Fig. 2(a).

We can see from the data distribution that the recall ratio is
mostly between 0.45 and 0.85. The words are divided into ten
difficulty groups for the balance and density of grouping data,
shown in Fig. 2(b) and Table II, respectively. The symbol d
indicates the difficulty; the higher the number, the greater the
difficulty. Then the exponential forgetting curve function pi =
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TABLE III
ILLUSTRATION OF GROUPING

2−Δti/hi−1 can be used to fit the halflife hi of memory and add
history of recall probabilities:

ei := (d,Δt1:i−1, r1:i−1,p1:i−1,Δti, pi, hi−1, N), (4)

The samples of (4) are shown in Table III. TheΔt1:i−1, r1:i−1

and p1:i−1 are the times-series features which will be integrated
into the HLR.

B. Halflife Regression Model (HLR)

Settle and Meeder [9] define the halflife regression model as
follows:

p = 2−Δ/h, (5)

where p denotes the probability of recall, Δ is the lag time since
the item is last reviewed, and h is the halflife or strength of the
learner’s memory of the item.

Let ĥΘ denote the estimated halflife, defined as:

ĥΘ = 2Θ·x

x = (x⊕, x�, lex), (6)

where Θ is a weight vector for the feature vector x, which
consists of the times a word is correctly recalled x⊕, the times
incorrectly recalled x� and the lexeme tag lex. These features
capture the statistical information in each student’s review his-
tory with each item.

The HLR model is trained by the following loss function:

loss = (p− p̂)2 + α(h− ĥ)2 + λ||θ||2, (7)

to optimize both p and h in the loss function.

C. DHP-HLR Model

We manually develop Difficulty-Halflife-P(recall)-HLR with
the Markov property for explainability and simplicity to enhance
HLR. In DHP-HLR, the dimensionalities of time-series are
decomposed into state variables and state-transition equations.
We take into account the following four factors:
� Halflife. It measures the storage strength of memory.
� P(recall). It measures the retrieval strength [33] of memory.

According to the spacing effect [3], the interval between
each review affects the halflife. When h is fixed, Δt and p
are mapped one-to-one. We use p = 2−Δt/h instead of Δt
as a state variable for normalization.

� Result of recall. The halflife increases after recall and
decreases after forgetting.

� Difficulty. Intuitively the higher the difficulty, the harder
the memory to be consolidated.

The last halflife, recall probability, and halflife are used to
project the time-series data into a three-dimensional space. As

Fig. 3. The projection in Difficulty, Halflife, and P(recall). The hi−1 and hi

denote last halflife and halflife. Similiarly, the pi−1 denotes P(recall).

Fig. 4. Forgetting curves of a set of related review events. The blue line shows
the forgetting curve after two reviews. And the red, green, and orange lines depict
the forgetting curves after three reviews which follow the successful review in
the blue line with three, four, and five days.

illustrated in Fig. 3, the color denotes the degree of difficulty.
Observing the projection of the data, we notice two phenomena:
hi > hi−1 when ri = 1 and hi < hi−1 when ri = 0. They imply
that a word’s halflife lengthens if a student remembers it through-
out a review. In turn, the halflife shortens if the learner forgets.
To further explore the dynamics of halflife during reviews, we
extract a group of adjacent review events shown in Fig. 4. Obvi-
ously, as the time between reviews increases, the probability
of recall decreases (blue line). And the halflife following a
successful review lengthens (red, green, and orange lines) as
the probability of memory declines, a phenomenon known as
the lag effect [34]. According to the lag effect, recall after long
intervals between learning sessions performs than recall after
short intervals.

Considering the above observations, the state-transition equa-
tion can be formulated as:

hi = [hi−1 · (eθ1·xi−1 + 1), eθ2·xi−1 ] · [ri−1, 1− ri−1]
T , (8)
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Fig. 5. The structure of DHP-HLR. di and hi represent the memory state
during the spaced repetition. The current input of memory behavior and the last
memory state determine the new memory state. Therefore, DHP-HLR has the
Markov property.

where xi = [log di−1, log hi−1, log(1− pi)] is the feature vec-
tor. eθ1·xi + 1 guarantees the hi after a recall greater than the
hi−1. And eθ2·xi means that the halflife after a forgetting is
constantly positive.

The data shows that if learners forget during the review, the
halflife of future successful recall will be shorter than those have
not been forgotten, even under the same recall probability and
last halflife conditions. It is explained by the fact that harder
word is more likely to be forgotten. The word that has been
forgotten is, therefore, considered more difficult. As a result,
the difficulty also has a state-transition equation:

di = [di−1, di−1 + θ3] · [ri−1, 1− ri−1]
T , (9)

where θ3 is greater than zero to keep the difficulty increasing
in each forgetting event. We set an upper limit to prevent the
difficulty from increasing indefinitely.

Finally, we formulate the memory state-transition equation
set of DHP-HLR:[

hi

di

]
=

[
hi−1

(
eθ1·xi−1 + 1

)
eθ2·xi−1

di−1 di−1 + θ3

][
ri−1

1− ri−1

]

xi−1 = [log di−1, log hi−1, log(1− pi−1)]

ri−1 ∼ Bernoulli(pi−1)

pi−1 = 2−Δti−1/hi−1

h1 = −1/ log2(0.925− 0.05 · d0), (10)

where the parameters for h1 are derived from the grouping of
difficulty.

Based on (10) and the initial values of difficulty d0, the halflife
hi of any memory behaviors can be calculated. The calculation
process is displayed in Fig. 5.

D. GRU-HLR Model

Explainability is a benefit of DHP-HLR. However, manu-
ally designing the state transition equation is its drawback.

Therefore, GRU network, a type of recurrent neural network,
is introduced to facilitate the process.

Based on (4), GRU-HLR can be desribed as follows:

ĥi = GRU(Δt1:i−1, r1:i−1,p1:i−1). (11)

To reduce the error of predicted recall probability, we improve
the loss function in (7) as:

l(ei,θ) =

∣∣∣∣∣hi − ĥi

hi + ĥi

∣∣∣∣∣+ C||θ||22, (12)

where we replace the mean squared error (MSE) with the sym-
metric mean absolute percentage error (sMAPE) to minimize
the mean absolute error (MAE) of p.

With GRU-HLR, it is possible to not only predict the halflife
and recall probability, but also capture the dynamics of memory:

hi, si = GRU-HLR(si−1,Δti−1, ri−1, pi−1), (13)

wheres is the hidden state in GRU, corresponding to the memory
state of a word in the learner’s mind. The GRU describes how
the memory state is updated from the i− 1th review event to ith
review event. Moreover, the memory state in spaced repetition
can be formulated as the Markov decision process (MDP), where
the action and cost are formulated in Section IV-B.

IV. SPACED REPETITION SCHEDULE OPTIMIZATION

In this section, we set up a practical goal for spaced repetition
and formulate it as a stochastic shortest path problem, which can
be solved by stochastic dynamic programming.

A. Problem Setup

Learners can effectively establish long-term memory via
spaced repetition. The number of repetitions and the time
spent on each repetition represent the cost of memory, whereas
the memory halflife assesses the long-term memory’s storage
strength. Therefore, the goal of spaced repetition schedule op-
timization is to achieve a particular quantity of learned content
with the target halflife at the lowest possible memory cost or
to consolidate additional learning materials to the target halflife
within a certain memory cost limitation. The latter may be re-
duced to making a memory material achieve the desired halflife
at the minimized memory cost (MMC).

The long-term memory model we construct in Section III-D
satisfies the Markov property. In DHP-HLR and GRU-HLR,
the state of each memory depends only on the last state, the
current review interval, and the result of the recall, which follows
a distribution that relies on the review interval. Due to the
randomness of halflife state-transition, the number of reviews
required for memorizing material to reach the target halflife is
uncertain. Therefore, the spaced repetition scheduling problem
can be regarded as a problem of infinite-time stochastic dynamic
programming. Since it has a termination state, which is the
target halflife, in the case of long-term memory formation.
It could be transformed into a stochastic shortest path (SSP)
problem [35], of which the goal is to control an agent, who
dynamically evolves in a system consisting of finite states, to
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Fig. 6. The stochastic shortest path problem in spaced repetition. The per-
centage above the dashed arrows is the probability of successful or forgetting if
the learner executes the corresponding review interval. The number attached to
solid arrows is the cost when the learner chooses the review interval.

converge on a predetermined objective. Actions attached with
costs are scheduled for the agent in each time period. Transitions
in the system are regulated by probability distributions, which
depend only on the last action. The policy’s goal is to select an
action for each state to minimize the total expected cost incurred
by the agent before reaching the target state beginning from a
given initial state. In the case of spaced repetition optimization,
the states are the halflife of memory and other hidden states; the
actions are the intervals for the next reviews; the cost is the time
of each review; the target state is a long halflife, which means
the memory is stable enough that no need to review again.

Combining with the optimization goal, we name the algorithm
as SSP-MMC.

As shown in Fig. 6, circles are memory states, squares are
review action (i.e., the interval after the current review), dashed
arrows indicate state transitions for a given review interval,
and black edges represent review intervals available in a given
memory state. The stochastic shortest path problem in spaced
repetition is to find the optimal review interval to minimize the
expected review cost of reaching the target state.

B. Formulation

To solve the problem, our proposed method is to model the
reviewing process for a word as an MDP with a set of states S ,
actions A, state-transition probability P , and cost function J .
The agent’s goal is to find a policy π that minimizes the expected
review cost to achieving the target state sN :

π∗ = argmin
π∈Π

lim
N→∞

Es0,a0,...

[
N∑
t=0

J (st, at) | π
]
. (14)

The state-space S depends on the state size of the memory
model. The DHP-HLR only has two state variables so that the
state can be formulated as s = (d, h). For GRU-HLR, the state
relies on the hidden layers, which use tanh as the activate
function with range of (−1, 1). It can be discretized as follows:

S
(
 s

ε �|s∈S)−−−−−−→ S, (15)

where ε is the step width of discretization.
The action space A = {Δt1,Δt2, . . . ,Δtn} consists of N

intervals that the agent can schedule for the item. We discretize
the intervals to days because most users prefer to review at a

specific time block, instead of the entire day. And it is infeasible
to control the specific timing of reviews when the actual user
has other tasks to do. The state-transition probability Ps,a(s

′) is
the probability item recalled at state s and action a, described in
(5). The cost function J is defined as:

J (s0) = lim
N→∞

E

{
N−1∑
t=0

gt(st, at(st), rt)

}

rt ∼ Bernoulli(pt), (16)

where the gt is the cost per stage and the rt is the result of
recall which follows the Bernoulli distribution. The target state
sN corresponds to a halflife bigger than hN , which is the target
halflife.

C. Algorithm

We solve the MDP(S,A,P,J ) using value iteration with
DHP-HLR and GRU-HLR to capture the dynamic of the mem-
ory state. The Bellman equation is:

J ∗(s) = min
a∈A(s)

{∑
s′

Ps,a(s
′)(g(r) + J ∗(s′))

}

s′ = F(s, a, r, p), (17)

where the J ∗ is the optimal cost function, and F is the state-
transfrom function including DHP-HLR and GRU-HLR. For
simplicity, we only consider the response of recall r: g(r) =
a · r + b · (1− r), a is the cost of recall and b is the cost of
forgetting.

Based on (17), the value iteration algorithm, as described in
Algorithm 1, uses a cost matrix to record the optimal cost and
a policy matrix to save the optimal action for each state during
the iteration.

In addition to the Algorithm 1, if it uses GRU-HLR as the
state-transfrom function, the halflife h can be transformed from
memory state s via the fully-connected layer of GRU-HLR.

V. EXPERIMENT

This section evaluates our framework in two aspects: memory
predicting and schedule optimizing. To obtain deeper insight,
we also analyze the model weights and the policy derived from
SSP-MMC.

A. Memory Predicting

1) Experimental Setting: Dataset We collected 220 million
review event logs formulated in (1) from the online language-
learning APP MaiMemo, and preprocessed them into 71,697
grouping samples formulated in (4).

Baselines We compared DHP-HLR and GRU-HLR with Pim-
sleur [23], Leitner [24], HLR and its variant [9]. To understand
the contribution of the time-series features to GRU-HLR, we set
ablation experiments, considering four variants of GRU-HLR:
with and without Δt1:i−1 features (-t), and with and without the
p1:i−1 feature (-p).
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Algorithm 1: SSP-MMC.

TABLE IV
PERFORMANCE OF EACH MEMORY MODEL ON TWO METRICS (BOLD FONT

FOR THE BEST)

Metrics We considered two different criteria to assess the
performance. The first metric is MAE(p), the absolute error
between the predicted recall probability and the actual recall
probability. The recall probability is a value between 0 and 1. The
smaller the MAE, the more accurate the prediction. The second
metric is sMAPE(h), the relative error between the predicted and
actual halflife.

Implements The size of the hidden layer of GRU-HLR de-
termines the dimensions of state space. For a fair compar-
ison between DHP-HLP and GRU-HLR, we set the hidden
layer size to 2. We randomly selected 20% of the data for
tuning the hyperparameters of GRU-HLR and finally selected
the followings: iterations=1,000,000, learning_rate=0.001,
weight_decay=0.00001. For the remaining 80% of the data,
5× 2-fold cross-validation was used for evaluation.

2) Result and Analysis: Table IV reports the results of each
memory model on two metrics. We can see GRU-HLR with
both p1:i−1 and Δt1:i−1 features performs the best. Moreover,
all GRU-HLR variants achieve lower MAE by at least 64% when
compared to HLR. The DHP-HLR outperforms the original
HLR. We drew the distributions of errors depicted in Fig. 7 in
order to analyze the benefits of our models. The recall probability

Fig. 7. Distribution of actual recall probability, halflife and errors.

distribution for the dataset is shown by the bars in Fig. 7(a).
The majority of samples has recall probabilities between 80%
and 90%. The MAE(p) of GRU-HLRs is less than 0.05 in
(40%, 100%). However, since the recall probability depends
on the memory’s halflife and the review interval, it is more
feasible to directly analyze the distribution of sMAPE(h) shown
in Fig. 7(b).

Most halflife values, in Fig. 7(b), fall between 4 to 32 days.
The HLRs perform worse when the halflife is less than 16 days
or more than 129 days. It is because statistical features, e.g.,
the accumulative historical number of recall and the number of
forgetting, cannot distinguish the difference between sequences
like r1:2 = (1, 0) and r1:2 = (0, 1). The difference is significant
in our dataset shown in Fig. 3. The halflife after forgetting is
significantly less than the halflife after recall, but the HLRs can
only yield compromised predictions during training, inducing
large errors. Another noteworthy observation is that most models
have large errors in the interval with higher halflife and fewer
samples, but HLRs also have greater errors in the interval with
a halflife of 4 to 8 days. In addition to the effect caused by
the statistical characteristics, we argued that the loss function
in (7) also contributes negatively. The item α(h− ĥ)2 pun-
ishes the error of any halflife interval indiscriminately so that
the percentage error of the low halflife interval is substantial.
The GRU-HLRs overcome this problem by improving the loss
function with sMAPE in (12). As for the higher halflife interval
greater than 141 days, most models perform unsatisfactorily,
probably because the noise from the real world increases. From
a practical point of view, when the memory halflife becomes
longer, the possibility of learners reviewing outside the APP
before the next review is increasing, and the memory behavior
data collected will also deviate from the learner’s real situation.
For these partial cases, making accurate predictions is, arguably,
less important.

Returning to Table IV, the results of the ablation experiments
are that GRU-HLR -p with additional featureΔt1:i−1 and GRU-
HLR -t with additional feature p1:i−1 are better than GRU-HLR
-p -t with only feature r1:i−1. Among them, the feature p1:i−1 is
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the most helpful in reducing the error. Moreover, the difference
between GRU-HLR with both Δt1:i−1 and p1:i−1 features and
GRU-HLR -t is smaller. As to why features can reduce prediction
errors, we assumed it is related to the memory’s retrieval strength
and storage strength in psychology. Storage strength represents
how well learned something is; retrieval strength is how ac-
cessible (or retrievable) something is. Memories that are more
difficult to retrieve tend to be strengthened more by recall [33]. In
the proposed models, the historical recall probability represents
the retrieval strength of each recall, and the halflife is equivalent
to the storage strength. Therefore, the recall probability history
is useful for predicting the halflife. The interval between reviews
is also important information. Reviewing at intervals (0-2-4-6-8)
and reviewing at intervals (0-5-5-5-5) have significantly differ-
ent results [36], as verified by the results of GRU-HLR -p and
GRU-HLR -t -p. However, the difference between GRU-HLR
and GRU-HLR -t is negligible. We argued that the feature p1:i−1

holds information of the feature Δt1:i−1. According to (5), pi
relies on Δti and hi−1 which is already contained in the hidden
layer. Therefore, the review interval can be considered as a
surrogate variable of the recall probability. It is worth noting
that the review interval is truncated to the nearest day. Some
information may have been lost, whereas the recall probability
is not subject to such limitation. This may explain why the
contribution of recall probability features is greater than that
of review interval features.

B. Model Analysis

Interpretability is a feature of DHP-HLR, and we visualized
DHP-HLR in 3D plots. At the same time, we performed a similar
analysis on GRU-HLR to explain whether the neural network
learns similar patterns.

1) DHP-HLR Model: According to the parameters obtained
by fitting the dataset and the equations of the model, we obtained
the recurrence formula of the halflife after a successful recall:

hi = hi−1 · (e3.25 · d−0.386
i−1 · h−0.147

i−1 · (1− pi−1)
0.821 + 1),

(18)
where the exponent of base d is negative, the hi decreases
with the growth of d. Fig. 8(a) illustrates that the hi after
successful recall increases as p decreases, which verifies the
existence of the spacing effect [3]. Fig. 8 shows that the growth
of the hi decreases as the hi−1 increases, which may imply
that the potential of learns’ memory consolidation decreases as
the memory storage strength increases, i.e., there is a marginal
effect.

Similarly, the recurrence formula of the halflife after a forget-
ting is:

hi = e1.003 · d−0.152
i−1 · h0.264

i−1 · (1− pi−1)
−0.017, (19)

where the exponent of bases d is less than its corresponding,
which means the difficulty has a weak impact on the memory
after a forgetting. Fig. 8(d) shows that the longer the hi−1,
the longer its hi after a forgetting, which may be because the
memory is not entirely lost in forgetting. Moreover, as pi−1

decreases, the hi after a forgetting also decreases, possibly due
to the fact that the memory is forgotten more entirely over time.

Fig. 8. The projection of DHP-HLR.

Fig. 9. The projection of GRU-HLR.

2) GRU-HLR Model: GRU-HLR is visualized in the similar
manner. By traversing each memory state and review interval,
we computed the hi−1, pi−1 and hi and mapped them to a
3-dimensional space in Fig. 9. We found that the pattern of
GRU-HLR prediction is very similar to that of DHP-HLR. For
example, Fig. 9(a) shows that the hi increases with the growth of
the hi−1 and the decline of the pi−1. One of the key differences
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between Figs. 8(a) and 9(a) is that the hi in GRU-HLR saturates
when the pi−1 becomes small enough, e.g., around 0.45 as shown
in Fig. 9(a). It is related to the halflife range in our dataset.
Longer halflife data require a longer time to collect. The hi

increases after recall in Fig. 9(a) is higher at the lower hi−1

and also has the same pattern as DHP-HLR. However, when
the hi−1 is close to 0, the difference is more distinguishable,
possibly because more difficult words tend to produce many
data with a lower halflife, and these words generally have
lower halflife increases. Comparing Figs. 8(d) and 9(d), there
is a huge divergence between DHP-HLR and GRU-HLR. In
GRU-HLR, the predicted hi after a forgetting is near 800 days
when pi−1 is 50% less. But that in DHP-HLR is less than
16 days. Due to data sparsity in this area, it remains unclear
that which model performs better in this experiment. Based on
domain experience and prerequisite information, however, we
conjectured that DHP-HLR’s predictions are closer to reality.
It is the disadvantage of the neural network-based model that
small sample size in certain area and big hypothesis space may
lead to large errors [37].

C. Schedule Optimizing

1) Environment: The environment is based on DHP-HLR
and GRU-HLR trained in Section V-A. The simulation process
involves two dimensions, inter-day and intra-day. To simulate
the learner’s preparation period and daily study time constraints,
the environment limits the number of days the simulation is
conducted and the time spent on review and study each day.
However, due to the stochastic nature of memory, the review
schedule for the day may take longer than the daily time limit. To
alleviate this situation, the review is scheduled before learning.
When the daily time is exhausted, the remaining review is
postponed to the next day regardless of whether it is completed.

The simulation process is shown in Algorithm 2, where
the Student represents the learner’s memory model, which
updates the memory state according to the review situation.
The Schedule is the interval repetition algorithm scheduler that
adjusts the review interval based on the learner’s feedback on the
memory state. The daylimit is the period limit. The costlimit,
the daily review cost limit, is the maximum amount of time a
learner can spend on review per day. ThehN is the target halflife.
When the halflife of the word exceeds this value, it will not be
scheduled for review and will be remembered forever.

We set a recall halflife of 360 days (near one year) as the target
halflife and set 600 s (10 min) as the upper limit of daily learning
cost. We used the average time spent by learners of 3 s for recall
and 9 s for forgetting. Then, we set a simulation duration of 1000
days for learning.

2) Baselines and Metrics: We compared SSP-MMC with
five baseline scheduling algorithms:
� RANDOM, which chooses a random interval from
[1, halflife] to schedule the review.

� ANKI, a variant of SM-2 [38].
� HALF-LIFE, where the halflife is used as the review inter-

val.

Algorithm 2: Spaced Repetition Simulator.

� THRESHOLD, review when p is less than or equal to a
certain level (we adopted 90% which is default in Super-
Memo [25]).

� MEMORIZE, an algorithm based on optimal control, with
codes from the open-source repository of [27]. It is trained
to determine the parameter for minimizing expectation of
review cost.

Our evaluation metrics include:
� THR (target halflife reached) is the number of words that

reach the target halflife.
� SRP (summation of recall probability) is the summation of

all learned words’ recall probability. The recall probability
is set at 100% when the word reaches the target halflife
to simulate that the learner has formed a solid long-term
memory.

� WTL (words total learned) is the number of total learned
words.

3) Result and Analysis: It is expected that SSP-MMC outper-
forms all baselines in the measure THR in both of the proposed
memory models. The THR is consistent with the optimization
goal of SSP-MMC, thus, SSP-MMC can reach the upper bound
of this metric theoretically. To quantify the relative difference
between the performance of each algorithm, we compared the
number of days for THR = 2000 (i.e., the COST of total review
shown in Table V). SSP-MMC saves about 12.5% cost of review
compared with MEMORIZE in DHP-HLR and 16.8% compared
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TABLE V
RESULTS OF SIMULATIONS IN SEVERAL SCHEDULES AND MEMORY MODELS

Fig. 10. Simulation results of schedule optimizing.

with THRESHOLD in GRU-HLR. The trend of THR during the
simulation is approximately linear, as shown in Fig. 10(a) and
(b). It means that the speed of memorizing words is constant.
Hence, the advantage of SSP-MMC over other baselines is
almost independent of the learning time.

As shown in Fig. 10(c) and (d), the comparison among sched-
ules in SRP is similar to that in THR. So the learner following
the schedules of the SSP-MMC will remember the most. In
the metric WTL shown in Fig. 10(e) and (f), the SSP-MMC
outperforms other baselines because it minimizes the cost of
memorization and gives learners more time to learn new words.

D. Policy Analysis

1) DHP-HLR Model: By training Algorithm 1 in the envi-
ronment of the DHP model, we obtained the expected review
cost and the optimal review interval for each memory state.

The review cost decreases as the halflife increases and in-
creases as the difficulty increases, as shown in Fig. 11(a).
Memories with a high halflife reach the target halflife at a lower

Fig. 11. The optimal policy on DHP-HLR.

expected cost. In addition, memories with greater difficulty have
a higher expected cost because they have a lower halflife growth,
as shown in Fig. 8(c), and require more reviews to reach the target
halflife.

The interval increases with difficulty for the same level of
memory halflife, as shown in Fig. 11(b). The reason could be that
forgetting raises the difficulty of simple memories and decreases
their halflife, leading to higher review costs. The scheduling
algorithm tends to give shorter intervals to simple memories
and reduce their probability of forgetting, even if it sacrifices a
small amount of halflife boost. The interval reaches its peak in
the midrange of halflife. It is necessary to compare Fig. 11(b)
with 11(c) to explain the peak.

The recall probability corresponding to the optimal review
interval increases with halflife and decreases with difficulty, as
shown in Fig. 11(c). It means that the scheduler will instruct
learners to review at a lower retrieval strength in the early stages
of memorization, which may reflect ”desirable difficulties”[33].
As the halflife increases to the target value, the recall probability
approaches 100%. According to the equation Δt = −h · log2 p
and the trend of p on h, optimal review intervalΔt first increases
and then decreases where the peak emerges.

2) GRU-HLR Model: To analyze the optimal policy derived
by the SSP-MMC on GRU-HLR, we visualized the state space
of GRU-HLR and its corresponding halflife, cost, interval, and
recall probability.

Fig. 12(a) illustrates the halflife in each state (s1, s2). The
maximun and minimum values of the halflife are at (1,−1) and
(−1, 1). Intuitively, the maximum of cost corresponds to the
minimum of halflife. However, in Fig. 12(b), the maximum value
of the cost is not located at the coordinates (−1, 1). Also, the
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Fig. 12. The optimal policy on GRU-HLR.

costs are not equal on the contour lines of halflife. This suggests
that, in addition to halflife, it requries more features to better
represent the memory state, where difficulty is not negligible.
Fig. 12(c) and (a) show that the optimal interval of review
increases first and then decreases as the halflife increases, which
is similar to the pattern shown in Fig. 11(b). The same pattern can
also be found by comparing Fig. 11(d) and (c). Therefore, the
optimal policy derived by the SSP-MMC algorithm also reflects
the inherent similarity of the two memory models.

E. Generality of SSP-MMC

To further validate the generality of our optimization algo-
rithm SSP-MMC, we port it into the experiment and dataset
in [32]. The training and testing procedures are in line with their
open-source code. The optimal policy of SSP-MMC is trained in
their student model, the original HLR [9], described in (6). We
compare the performance of SSP-MMC with two alternatives:
(i) a state-of-the-art method called TPPRL [32], which does
not make any assumptions on the model of memory, and (ii)
a baseline schedule which chooses items uniformly at random
with a constant reviewing rate.

The results are shown in Fig. 13, where the cost of review by
each method is the same. Fig. 13(a) shows that our SSP-MMC
is on par with TPPRL in maximizing the empirical recall proba-
bility at time T + τ . Fig. 13(b) compares the average fraction of
review cost per day across all items for SSP-MMC and TPPRL.
Both SSP-MMC and TPPRL have a constant load over time.
To summarize, SSP-MMC still has a good performance on
the dataset of [32], which proves the generality of SSP-MMC.
Besides, the time cost of SSP-MMC’s training process, which

Fig. 13. Performance of SSP-MMC against TPPRL and a uniform baseline.

linearly depends on the size of memory states, is less than
TPPRL, which requires thousands of iterations with given items
and learning time. In this experiment, training SSP-MMC only
costs several seconds, but training TPPRL takes at least one hour.
And SSP-MMC is more scalable than TPPRL. If the number of
items or the length of the learning period was changed, TPPRL
needs to train from scratch. In contrast, SSP-MMC only needs
training once if the memory model doesn’t change. In summary,
our SSP-MMC not only has achieved promising performance,
but also costs less time over TPPRL.

VI. CONCLUSION AND FUTURE WORK

We designed a long-term memory model based on time-series
information that can well fit the existing data, and provided a
solid foundation for optimizing spaced repetition scheduling.
The memory cost of learners is minimized as the goal of spaced
repetition software based on stochastic optimal control theory.
We derived a mathematically guaranteed scheduling algorithm
for minimizing memory cost. SSP-MMC combines psycholog-
ically proven theories (e.g., forgetting curve and spacing effect)
with modern machine learning techniques to reduce the cost of
learners in forming long-term memory. Compared with the HLR,
memory models based on time-series are significantly more
accurate in predicting users’ long-term memory. The stochastic
dynamic programming-based spaced repetition scheduling algo-
rithm SSP-MMC outperforms the previous algorithm in all met-
rics. Experiment results verify the hypothesis that time-series
features are very effective in predicting long-term memory. It
suggests that the spaced repetition scheduling algorithm based
on the time-series model and stochastic optimal control method
can effectively predict learners’ long-term memory state and
improve memory efficiency.

Further work is certainly encouraged to improve time-series-
based models by considering the effect of user features on
memory state and validating these models beyond language
learning applications. In addition, the scenarios where learners
use spaced repetition methods are rather diverse. Designing
optimization metrics that better help learners archive their goals
is yet another area worth further investigation.
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[19] P. Woźniak, E. Gorzelańczyk, and J. Murakowski, “Two components of
long-term memory,” Acta Neurobiol. Exp., vol. 55, no. 4, pp. 301–305,
1995.

[20] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
Oct. 2014, arXiv:1409.1259.

[21] J. Ye, J. Su, and Y. Cao, “A stochastic shortest path algorithm for opti-
mizing spaced repetition scheduling,” in Proc. 28th ACM SIGKDD Conf.
Knowl. Discov. Data Mining, New York, NY, USA, 2022, pp. 4381–4390.
[Online]. Available: https://doi.org/10.1145/3534678.3539081

[22] P. I. Pavlik and J. R. Anderson, “An ACT-R model of the spacing effect,”
in Proc. 5th Int. Conf. Cogn. Model., 2003, pp. 177–182.

[23] P. Pimsleur, “A memory schedule,” Modern Lang. J., vol. 51, no. 2, pp. 73–
75, Feb. 1967.

[24] S. Leitner, So Lernt Man Leben, 1st ed., Munich, Germany: Droemer-
Knaur, 1974.

[25] P. A. Woiniak and E. J. Gorzelanczyk, “Optimization of repetition spacing
in the practice of learning,” Acta Neurobiol. Exp., vol. 54, no. 2, pp. 59–62,
1994.

[26] S. Reddy, I. Labutov, S. Banerjee, and T. Joachims, “Unbounded human
learning: Optimal scheduling for spaced repetition,” in Proc. 22nd ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 1815–1824.

[27] B. Tabibian, U. Upadhyay, A. De, A. Zarezade, B. Schölkopf, and M.
Gomez-Rodriguez, “Enhancing human learning via spaced repetition op-
timization,” in Proc. Nat. Acad. Sci., 2019, pp. 3988–3993.

[28] U. Upadhyay, G. Lancashire, C. Moser, and M. Gomez-Rodriguez, “Large-
scale randomized experiments reveals that machine learning-based instruc-
tion helps people memorize more effectively,” NPJ Sci. Learn., vol. 6, no. 1,
pp. 1–3, Sep. 2021.

[29] A. Hunziker et al., “Teaching multiple concepts to a forgetful learner,” in
Proc. 33rd Int. Conf. Neural Inf. Process. Syst., 2019, pp. 4048–4058.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[31] A. Nioche, P.-A. Murena, C. de la Torre-Ortiz, and A. Oulasvirta, “Im-
proving artificial teachers by considering how people learn and forget,” in
Proc. 26th Int. Conf. Intell. User Interfaces, 2021, pp. 445–453.

[32] U. Upadhyay, A. De, and M. Gomez-Rodrizuez, “Deep reinforcement
learning of marked temporal point processes,” in Proc. 32nd Int. Conf.
Neural Inf. Process. Syst., 2018, pp. 3172–3182.

[33] R. A. Bjork et al., “A new theory of disuse and an old theory of stimulus
fluctuation,” Learn. Processes Cogn. Processes: Essays Honor William K.
Estes, vol. 2, pp. 35–67, 1992.

[34] A. W. Melton, “The situation with respect to the spacing of repetitions
and memory,” J. Verbal Learn. Verbal Behav., vol. 9, no. 5, pp. 596–606,
Oct. 1970.

[35] I. P. Androulakis, “Dynamic programming: Stochastic shortest path prob-
lems,” in Encyclopedia of Optimization, Berlin, Germany: Springer, 2009,
pp. 869–873.

[36] G. B. Maddox, D. A. Balota, J. H. Coane, and J. M. Duchek, “The role
of forgetting rate in producing a benefit of expanded over equal spaced
retrieval in young and older adults,” Psychol. Aging, vol. 26, no. 3, pp. 661–
670, 2011.

[37] D. Haussler, “Probably approximately correct learning,” in Proc. 8th Nat.
Conf. Artif. Intell., 1990, pp. 1101–1108.

[38] P. A. Wozniak, “Optimization of learning,” 1990. [Online]. Available: http:
//super-memory.com/english/ol.htm

Jingyong Su received the BE and MS degrees in
electrical engineering from the Harbin Institute of
Technology, in 2006 and 2008, respectively, and the
PhD degree in statistics from Florida State Univer-
sity, in 2013. He is a professor of computer science
with the Harbin Institute of Technology at Shenzhen,
China. He joined the Department of Mathematics
& Statistics, Texas Tech University, in 2013 as an
Assistant Professor and became tenured in 2019. His
areas of research include computer vision, medical
image analysis, functional and shape data analysis.

Junyao Ye received the BE degree in computer
science from the Harbin Institute of Technology
(Shenzhen), in 2022. He is a research engineer with
MaiMemo Inc., Qingyuan, China. His main research
interests lie within educational data mining, person-
alized learning and adaptive systems.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 17,2023 at 08:16:22 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1145/3534678.3539081
http://super-memory.com/english/ol.htm
http://super-memory.com/english/ol.htm


SU et al.: OPTIMIZING SPACED REPETITION SCHEDULE BY CAPTURING THE DYNAMICS OF MEMORY 10097

Liqiang Nie (Senior Member, IEEE) received the
BEng and PhD degree from the Xi’an Jiaotong Uni-
versity and National University of Singapore (NUS),
respectively. He is a fellow of AAIA and IAPR,
and currently the dean with the School of Computer
Science and Technology, Harbin Institute of Tech-
nology (Shenzhen campus). His research interests lie
primarily in multimedia content analysis and infor-
mation retrieval. He has co-/authored more than 100
CCF-A papers and 5 books, with 18 k plus Google
Scholar citations. He is an AE of IEEE Transactions

on Knowledge and Data Engineering, IEEE Transactions on Multimedia, IEEE
Transactions on Circuits and Systems for Video Technology, ACM Transactions
on Multimedia Computing, Communications, and Applications, and Information
Science. Meanwhile, he is the regular area chair or SPC of ACM MM, NeurIPS,
IJCAI, AAAI and ICML. He is a member of ICME steering committee. He
has received many awards, like SIGMM emerging leaders in 2018, ACM MM
and SIGIR best paper honorable mention in 2019, SIGMM rising star in 2020,
MIT TR35 China 2020, DAMO Academy Young fellow in 2020, SIGIR best
student paper in 2021, ACM MM best paper award in 2022, first price of the
provincial science and technology progress award in 2021 (rank 1), provincial
youth science and technology award in 2022, AI’s 10 to Watch in 2022. Some
of his research outputs have been integrated into the products of some listed
companies.

Yilong Cao received the BE and PhD degrees in elec-
tronic engineering from the University of Sheffield,
in 2007 and 2013, respectively. He is a co-founder of
Maimemo Inc. His areas of research include genetic
programming, loss function analysis, and educational
data mining.

Yongyong Chen received the BS and MS degrees
from the Shandong University of Science and Tech-
nology, Qingdao, China, in 2014 and 2017, respec-
tively, and the PhD degree from the University of
Macau, Macau, in 2020. He is currently an assistant
professor with the School of Computer Science and
Technology, Harbin Institute of Technology, Shen-
zhen, China. He has published more than 50 research
papers in top-tier journals and conferences, includ-
ing IEEE Transactions on Image Processing, IEEE
Transactions on Information Forensics and Security,

IEEE Transactions on Dependable and Secure Computing, IEEE Transactions
on Neural Networks and Learning Systems, IEEE Transactions on Multimedia,
IEEE Transactions on Circuits and Systems for Video Technology, IEEE Trans-
actions on Geoscience and Remote Sensing, IEEE Transactions on Computa-
tional Imaging, IEEE Journal of Selected Topics in Signal Processing, Pattern
Recognition and ACM MM. His research interests include image processing,
data mining, and computer vision.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 17,2023 at 08:16:22 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


