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ABSTRACT

Spaced repetition is a mnemonic technique where long-term mem-
ory can be efficiently formed by following review schedules. For
greater memorization efficiency, spaced repetition schedulers need
to model students’ long-term memory and optimize the review cost.
We have collected 220 million students’ memory behavior logs with
time-series features and built a memory model with Markov prop-
erty. Based on the model, we design a spaced repetition scheduler
guaranteed to minimize the review cost by a stochastic shortest path
algorithm. Experimental results have shown a 12.6% performance
improvement over the state-of-the-art methods. The scheduler has
been successfully deployed in the online language-learning app
MaiMemo to help millions of students.

CCS CONCEPTS

« Applied computing — E-learning; - Computing method-
ologies — Dynamic programming for Markov decision pro-
cesses.
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1 INTRODUCTION

To form long-term memory, students should repeatedly review
learned materials. According to the primary memory experiment
by Ebbinghaus[6], the number of repetitions, the interval between
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Figure 1: The vocabulary flashcard in MaiMemo

repetitions, and other factors during the review affect one’s mem-
ories. These factors have been investigated in a large number of
psychological experiments[4] and summarized into some effects,
such as spacing effect[5] and lag effect[10]. Spaced repetition is a
mnemonic technique employing these effects to improve memory
efficiency. Spacing out each review can effectively enhance long-
term memory. Spaced repetition has a significant effect on second
language acquisition and many studies show that spaced repetition
can also work in the fields of medicine[18], statistics[9], history[3],
etc.

In most spaced repetition practices, the materials are presented
in flashcards, as shown in Figure 1, with simple schedules determin-
ing when each flashcard will be reviewed. The problem of designing
a more efficient spaced repetition scheduling algorithm has a rich
history. From Leitner’s box[8] to SuperMemo[20] which is the first
spaced repetition software, they use simple rule-based heuristics
with the designers’ experience and personal experiments. Many
spaced repetition software (Anki, Mnemosyne, etc.) still use these
algorithms. Due to the hard-coded parameters and the lack of theo-
retical proof, these algorithms cannot adjust to different learners
and materials. Meanwhile, their performance cannot be guaranteed.

With the popularity of e-learning platforms, vast amounts of data
about students’ reviews could be collected. It enables researchers
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to design trainable, adaptive, and guaranteed algorithms. An effi-
cient spaced repetition scheduling algorithm can save millions of
users’ time and help them remember more words in MaiMemo, a
language learning application that supports learners in memorizing
vocabulary. Recently, some works employed machine learning to
determine the optimal review times. However, due to the following
three reasons, the methods do not fit our conditions:

e Lack of time-series information: Several works, such as HLR
(Half-life Regression)[14] model and EFC (Exponential Forget-
ting Curve)[12] model, use the forgetting curve to relate the
probability of recall with the time elapsed since the last review.
But they ignore the effect of interval on memory strength. In
their models, memory strength is a function of the number of
repetitions. According to the spacing effect[5] and the data we
collected, the interval between reviews has a significant impact
on the formation of long-term memory.

Lack of user-perceived optimization goals: HLR [14]and the im-
proved C-HLR[22] model based on it, aim to accurately predict
the recall probability of memory. Reducing the pressure of re-
view, maximizing memory, and other relevant indicators to users
are not considered.

Lack of explainability: Some algorithms[13, 15, 19, 21] based on
deep reinforcement learning are a black box for designers and
lack explainability. Providing explaination during the model
scheduling the review of students is helpful for educational
research[16].

In this paper, we have established the DHP (Difficulty-Halflife-
P(recall)) model for simulating the user’s long-term memory based
on the collected millions of memory data. We set a clear opti-
mization goal with practical significance: to minimize the mem-
orization cost for users to form long-term memory. To achieve
this goal, we propose a novel spaced repetition scheduling al-
gorithm, namely SSP-MMC (Stochastic-Shortest-Path-Minimize-
Memorization-Cost).

Our work provides a long-term memory model more approxi-
mate to the natural environment for spaced repetition schedulers,
tested by data from the real world. We find a possible optimization
problem for spaced repetition scheduling and the corresponding
optimal method. We make the data and software tools publicly avail-
able to facilitate reproduction and follow-up research (see Section
7). To summarize, the main contributions of this paper are:

e Build and publicly release our spaced repetition log dataset,
which is the first to contain time-series information.

o This is the first work to employ the time-series feature to model
long-term memory to the best of our knowledge.

o The empirical results demonstrate that SSP-MMC outperforms
state-of-the-art baselines in minimizing the memorization cost.

2 RELATED WORK

There is already a large amount of literature in terms of optimizing
spaced repetition, from modeling and predicting learners’ long-term
memory to designing optimization scheduling algorithms based on
related memory models.

Spaced repetition and memory models. ACT-R (Adaptive
Character of Thought-Rational model)[1] is cognitive architecture
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including a declarative memory module. It assumes that each ex-
ercise produces a power forgetting curve and that multiple power
functions approximate the forgetting curve in spaced repetition.
MCM (Multiscale Context Model)[11] integrates two theories of
spacing effect and uses multiple exponential functions to approxi-
mate the forgetting curve. HLR[14] is a trainable spaced repetition
model to predict the half-life of memory. A work[22] improves the
model, introduces neural networks, and includes more psychologi-
cal and linguistic features. However, these models ignore time-series
information like the order of historic recall result sequence and the
interval between every successive review.

Optimal scheduling with spaced repetition models. To bal-
ance the learning of new material and the reviewing of learned
material, Reddy et al.[12] propose a queueing network model for
the Leitner System[8] and designed a heuristic algorithm for sched-
uling review. However, the algorithm is based on the EFC model
taking memory strength as a function of the number of reviews and
position of Leitner Box instead of the interval between repetitions.
Tabibian et al.[17] introduce marked temporal point processes to
represent spaced repetition and regard the scheduling as an op-
timal control problem. They come up with the tradeoff between
recall probability and the number of reviews. Due to the limit of
the dataset, the forgetting rate in their model is affected only by the
recall result. In the work of Hunziker et al.[7], optimizing spaced
repetition scheduling boiled down to stochastic sequence optimiza-
tion problems. They designed a greedy algorithm to achieve high
performance in maximizing learners’ retention. But the sufficient
conditions for the algorithm to achieve a high utility are strict and
may not be applicable in most cases. Recently, reinforcement learn-
ing has also been applied to optimize spaced repetition scheduling.
A number of papers[13, 15, 19, 21] used RL to maximize learners’
memory expectations by designing rewards and training in a sim-
ulated environment. However, the environments on which their
algorithms were based are oversimplified, making them not well
suited to the real world. For example, in [13]’s work, they assumed
that the student could only learn one item per step and the intervals
between steps are constant. In addition to that, these algorithms lack
explainability, and their performance varies in different simulation
environments and is not always superior to heuristic algorithms.

3 LONG-TERM MEMORY MODEL

To design a high-efficiency, guaranteed, interpretable spaced repe-
tition scheduling algorithm, we collect learners’ memory behavior
data and then use the data to validate several psychological ef-
fects. Using these effects, we model memory to understand how
scheduling in spaced repetition impacts the learner’s memory state.

3.1 Building Dataset

We have collected one month of MaiMemo’s logs containing 220
million memory behavior data from 828 thousand students to build
a model to simulate learners’ memory. For the following reasons,
we do not use Duolingo’s open-source dataset:

o It lacks time-series aspects such as sequences of feedback and in-
terval, and our analysis of the data shows that historical features
have a substantial impact on memory state.
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o Its recall probability definition is questionable. Duolingo defines
the recall probability as the proportion of times a word is cor-
rectly recalled in a given session, implying that multiple memory
behaviors of the same word in a given session are independent.
However, the first recall will influence the learners’ memory
state and subsequent memories throughout the day.

The historical information of learners’ word memory is recorded
in MaiMemo’s logs. We use a quad to describe a memory behavior
event:

1)
which means that the user u reviewed the word w at time ¢ and
either recalled it (r = 1) or forgot it (r = 0).

To consider the times-series of memory behavior events, we
include historical features:

e:= (u,w,t,r),

e = (u, w, At1.i—1, r1.im1, Ati, 1),

@)

where e; is the ith memory behavior event that the user u reviewed
the word w and At is the time elapsed from the last review. Aty.j—1
and rq:;—1 are the interval sequence and recall sequence from 1st
to i — 1th.

We filter out the logs of which the first feedback is r = 1 to
exclude the influence of memories that learners have formed before
using spaced repetition. The sample logs of memory behavior events
of learners are shown in Table 1.

Table 1: Samples of dataset

u w Aty:i—1 rii-1 At 1
23afld solemn 0,1,3,1,3,6,10 0,1,0,1,1,1,0 1 0
23afld dominate 0 0 1 1
e€9654e nursery 0,1,1,3,1,3 0,0,1,0,1,1 1 1

Based on the above dataset, we verify two psychological phe-
nomena that are significant in spaced repetition.

3.2 Forgetting Curve and Spacing Effect

The term "forgetting curve" describes how memory decay over
time once a learner stops reviewing. In the above memory behavior
events, recall is binary (i.e., a user either recalls or forgets a word).
To capture memory decay, we need to get the probability underlying
recall. We use the recall ratio n,=1/N in a group of N individuals
learning words as the recall probability p:

®)

By controlling the w, At;.;—1 and r1.;-1, we can plot the p for
each At to obtain the forgetting curve. The ratio n,=1 /N approaches
the recall probability with N large enough. However, there are al-
most 100,000 words in MaiMemo, and the behavior events collected
for each word in different time series are sparse. We need to group
words to make a tradeoff between distinguishing different words
and alleviating data sparsity. Given that we’re interested in the for-
getting curve, material difficulty significantly influences forgetting
speed. As a result, we try to use the recall ratio the next day after
learning them for the first time as a criterion for classifying the
difficulty of words. Figure 2(a) depicts the recall ratio distribution.

ej = (w, Aty-1,r1i-1, Ati, pi, N).
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Figure 2: The distributions of P(recall) and difficulty. The
easiest words with P(recall) > 0.85 are assigned d = 1 and
the hardest words P(recall) <= 0.45 are assigned d = 10. The
difficulties of the remaining words are assigned from 2 to 9
by dividing remaining interval of P(recall) equaly into eight
parts.

Table 2: Samples of words’ difficulty

w d Atyi-1 ryi-1 Atpopi N

automobile 2 0 0 1 0.8379 7501
multiply 6 0 0 1 0635 7495
hnger 9 0 0 1 0.4925 7493
hatch 10 0 0 1 0.4371 7492

We can see from the data distribution that the recall ratio is
mostly between 0.45 and 0.85. For the balance and density of group-
ing data, the words are divided into ten difficulty groups. The results
of grouping is shown in Figure 2(b) and Table 2. The symbol d in-
dicates the difficulty, with the larger the number, the greater the
difficulty.

Thus, the grouping memory behavior event can be represented
as:

e; := (d, Aty.j—1,r1:i-1, Ati, pi, N). (4)

By grouping, we can draw forgetting curves with enough data.
We use the exponential forgetting curve function p; = 2% Ihi 1o
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fit them and calculate the half-life h; of memory:
ei := (d, Aty;i1,r1:i-1, hi, N). ®)

The spacing effect states that as the time between review sessions
rises, so does memory consolidation[5]. In our dataset, we can use
the ratio of the half-life before and after a review to indicate the
consolidation degree of memory.

0.95
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Figure 3: Forgetting curves of different time series.

The scatter points in Figure 3 reflect the proportion of recall
corresponding with each interval, and the curves are the results
of fitting these points using an exponential function. The various
colors denote the different control situations. From the various
memory behavior events, we can observe that a successful recall
lengthens the memory half-life. The effect of memory consolidation
rises as the review interval extends.

Based on the above observations, we propose the DHP (Difficult-
Halflife-P (Recall)) Model to fit and interpret the existing data.

3.3 Difficulty-Halflife-P(recall) Model

Current advanced approaches for processing time-series data are
based on recurrent neural networks like LSTM and GRU, which
can predict the half-life using time-series features. However, intro-
ducing the neural network will make our algorithm unexplainable.
Instead, We develop a time-series model with the Markov property
for explainability and simplicity. We reduce the dimensionality of
time-series into state variables and state-transition equations in
this model. We consider the following four variables:

o Half-life. It measures the storage strength of memory.

o Recall probability. It measures the retrieval strength[2] of mem-
ory. According to the spacing effect, the interval between each
review affects the half-life. When h is fixed, At and p are mapped
one-to-one, and for normalization, we use p = 270t/h ingtead of
it as a state variable.

o Result of recall. The half-life increases after recall and decreases
after forgetting.

o Difficulty, the higher the difficulty, the harder the memory to
consolidate.

The time series are projected into 3D space with the last half-life,
recall probability, and half-life as the XYZ axis, and the difficulty is
represented by the color, as illustrated in Figure 4.
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Figure 4: The projection in Difficulty, Half-life, and P(recall).
The last_halflife and halflife denote h;—; and h;. Similiarly,
last_p_recall denotes p;_;.

By observing the projection of the data, we notice two phe-
nomena: h; > hj—1 when r; = 1 and h; > 0 when r; = 0. In the
state-transition equation, we account for these two constraints:

hi = [hi—1 - (exp(01 - x;) + 1), exp(02 - x;)] - [ri, 1= ri]T,  (6)

where x; = [logd;—1,1log hi—1,log(1 — p;)] is the feature vector.
Even under the identical recall probability and last half-life con-
ditions, we find that once learners forget during the review, the
half-life of subsequent recall success is shorter. We attribute this to
the fact that more difficult material is more likely to be forgotten.
So the forgotten material is more difficult than remembered mate-
rial. As a result, a new state-transition equation for the difficulty is

added:
d; = [diz1, di1 + 03] - [ri, 1 -] T (7)

Finally, we formulate the memory state-transition equation set
of the DHP model:

[ hi ] _ [ hi—1 - (exp (01 - x;) + 1)

exp (02 - x;) ri
d;

di—1 di—1+03 1—-r
x; = [logdi-1,log hi—1,log(1 — p;)]
ri ~ Bernoulli(p;)

pi= o~ Ati/hiy

h1 = —1/log,(0.925 — 0.05 - dy),
(8)

where the parameters for h; are derived from the grouping of
difficulty.

ITo prevent the difficulty from increasing indefinitely, we set an upper limit.
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Based on Equation 8 and the initial values of difficulty dy, the half-
life h; of any memory behaviors can be calculated. The calculation
process is shown in Figure 5.

Memory behavior

8
e

Memory state

Figure 5: The structure of the DHP model

4 OPTIMAL SCHEDULING

With the DHP model describing learners’ long-term memory, we
can use it to simulate the performance of spaced repetition sched-
uling algorithms. Before designing optimal scheduling, we need to
set a goal.

4.1 Problem Setup

The purpose of the spaced repetition method is to help learners
form long-term memory efficiently. Whereas the memory half-life
measures the storage strength of long-term memory, the number
of repetitions and the time spent per repetition reflect the cost
of memory. Therefore, the goal of spaced repetition scheduling
optimization can be formulated as either getting as much material
as possible to reach the target half-life within a given memory cost
constraint or getting a certain amount of memorized material to
reach the target half-life at minimal memory cost. Among them,
the latter problem can be simplified as how to make one memory
material reach the target half-life at the minimum memory cost
(MMC).

The long-term memory model we constructed in Section 3.3
satisfies the Markov property. In the DHP model, the state of each
memory depends only on the last half-life, the difficulty, the current
review interval, and the result of the recall, which follows a random
distribution relying on the review interval. Due to the randomness
of half-life state-transition, the number of reviews required for mem-
orizing material to reach the target half-life is uncertain. Therefore,
the spaced repetition scheduling problem can be regarded as an
infinite-time stochastic dynamic programming problem. In the case
of forming the long-term memory, the problem has a termination
state which is the target half-life. So it is a Stochastic Shortest Path
(SSP) problem. Combining with the optimization goal, we name the
algorithm as SSP-MMC.
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4.2 Stochastic Shortest Path Algorithm

Figure 6: A graphical representation of SSP

As shown in Figure 6, without considering the state of difficulty,
circles are half-life states, squares are review intervals, dashed
arrows indicate half-life state transitions for a given review interval,
and black edges represent review intervals available in a given
memory state with the corresponding cost of review. The stochastic
shortest path problem in spaced repetition is how the scheduler
can suggest the optimal review interval to minimize the expected
review cost for reaching the target half-life.

Symbol definition:

o hy - Initial half-life

o hy - target half-life

® hpyq,disr = f(hg, di, Aty rr) - memory state-transition equa-

tion

g(hg, dy, Aty 1) - review cost?

o AT(hg,dy) - the set of optional review intervals corresponding
the current memory state.

o Jr(ho,d)- Total review cost for each difficulty.

The Bellman’s equation for SSP-MMC:

J (e die) = Elg(ri) + J(f (hie, di, Atie, rie)) ] (9)

min
Aty €AT (hg,dy)
Based on this equation, it can be solved iteratively by stochastic
dynamic programming to obtain the optimal review interval Aty
corresponding to each hy, dj. Since h is a continuous value, which
is not conducive to recording states, it can be discretized as follows:

hindex = [1og(h)/log(base)], (10)

where base is used to control the size of the h bins. In the state-
transition equation,h is approximately exponentially growing. So
the function log is used to reduce the sparsity in the range of high
h.

Since there is an upper difficulty limit dy and a termination half-
life hpy, we can build a cost matrix J[dn ] [An] and initialize it to inf.
Set J[di][hn] = 0 and start iterating through each (d, hy) from

2For simplicity, we only consider the r: g(rx) = a - r +b - (1 —rg), a is the cost of
recall success and b is the cost of recall failure.
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AT (hg, dy) to each Aty and compute pg, b, =1, Arp=0, drp=1, dri=0,
and then use the following equation

Jlhilld]l = mpikn[Pk (9(re = 1) + J[hp=111dr=1])
+(1 = pr) - (9(r = 0) + J[hry=0] [dry=0])]

to iteratively update the optimal cost corresponding to each mem-
ory state. A strategy matrix is used to record the optimal review

interval in each state. The optimal strategy converges finally over
iterations. SSP-MMC is given in Algorithm 1.

(11)

Algorithm 1: SSP-MMC
Data: a,b,dn, hn
Result: 7*[dN][hN]. J[dN][AN]
1 initialization;
2 for d « dn to dy do
3 | J[dl[ho : hy—1] = inf;
+ | J[dI[hN] =0;
5 while AJ < 0.1 do

5 Jne = Jd][hol;

7 for h « hn_1 to hy do

8 foreach At € AT(d, h) do
9 p 2_%;

10 hy=1 < f(h,p,d,1);

hr=o < f(h,p,d,0);

J < p-(a+J[d][hr=1])
+(1=p) - (b+J[d+2][hr=0];

if J < J[d][h] then

12

13

14 JId][hl = J;

15 7*[d][h] = At;
16 end

17 end

18 end

19 AJ = Jp, — Jldl[h];

20 end

21 end

5 EXPERIMENT

Our experiments are designed to answer the following questions:
e How well does the DHP model simulate long-term memory?

e What is the practical significance of the weight parameters of
the DHP model?

What are the patterns of optimal review intervals given by the
SSP-MMC algorithm?

How does the SSP-MMC algorithm improve on different metrics
compared to baselines?

In this section, we train the DHP model first based on the dataset
collected in Section 3.3 and compare it with the HLR model. The
parameters of the DHP model are also visualized to obtain an intu-
itive interpretation of the memory. Then, we use the DHP model as
a training environment for the SSP-MMC algorithm to get the opti-
mal policy and visualize it. Finally, we compare the performance of
the SSP-MMC with different baselines in a simulation environment
composed of the DHP model.
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5.1 DHP Model Weight Analysis

To have a better understanding of the DHP model, we compare it
with the HLR[14] model in terms of predicted half-life and analyze
the model weights.

Table 3: Evaluation results

Recall® Forget?
Method MAE3 MAPE* MAE MAPE
DHP 1193 26.16% 0.44 31.99%
HLR 4170 45.75% 7.08  112.7%

1 Recall: half-life after recall.

2 Forget: half-life after forget.

3 MAE: mean absolute error.

4 MAPE: mean absolute percentage error.
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Figure 7: The results of fitting

The results of fitting are shown in Figure 7. From the comparison
in Figure 7(a) and 7(b), we can find that HLR is under-fitted in
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Figure 9: The optimal policy

predicting the half-life, and the prediction error (shown in Table
3) of the DHP model is significantly smaller than that of the HLR
model, expecially in the result of Forget. It is most likely because
HLR drops the time-series information, making it impossible to
distinguish memory behaviors such as r1.;2 = 1,0 and r1;2 = 0, 1.
According to the parameters obtained by fitting and the equations
of the model, we get the half-life after a successful recall:

hiv1 = hi - (exp(3.81) - d; -2 70127 (1 - )97 1 1), (12)

The Figure 8(a) illustrates that the half-life after successful recall
increases as p; decreases, which verifies the existence of the spacing
effect (see §3.2). Figure 8(b) shows that the increasing multiplication
of the half-life decrease as the last half-life increases, which may

imply that our memory consolidation decreases as the memory
strength increases, i.e., there is a marginal effect.
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Similarly, the half-life after a failed recall is:
his1 = exp(=0.041) - d; 041 p0-377 . (1 — p;) 70227, (13)
Figure 8(c) plots that the longer the half-life of memory, the
longer its half-life after a failed recall, which may be because the
memory is not entirely lost in forgetting. And as recall probability
decreases, the half-life after a failed recall also decreases, which

could be due to the memory being forgotten more entirely over
time.

5.2 SSP-MMC Optimal Policy Analysis

By training Algorithm 1 in the environment of the DHP model,
we have obtained the expected review cost and the optimal review
interval for each memory state.

The cost of review decreases as the half-life increases and in-
creases as the difficulty increases as shown in Figure 9(a). Memories
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with a high half-life reach the target half-life at a lower expected
cost. In addition, memories with greater difficulty have a higher
expected cost because they have a lower half-life growth as shown
in Figure 8(b) and require more review to reach the target half-life.

The interval increases with difficulty for the same level of mem-
ory half-life as shown in Figure 9(b). This may be because forgetting
raises the difficulty of simple memories and decreases their half-life,
leading to higher review costs. The scheduling algorithm tends to
give shorter intervals to simple memories and reduce their proba-
bility of forgetting, even if it sacrifices a bit of half-life boost. The
interval reaches its peak in the midrange of half-life. It is necessary
to compare with Figure 9(c) to explain the peak.

The recall probability corresponding to optimal interval increases
with half-life and decreases with difficulty, as shown in Figure 9(c).
It means that the scheduler will instruct learners to review at a
lower retrieval strength in the early stages of memorization, which
may be a reflection of "desirable difficulties"[2]. As the half-life
increases to the target value, the recall probability approaches 100%.
According to the equation At = —h - log, p and the trend of p on h,
At is first increasing and then decreasing where the peak emerges.

5.3 Offline Simulation

We compare five baseline policies: RANDOM, ANKI, HALF-LIFE,
THRESHOLD, and MEMORIZE; and three metrics: target half-life
reached, summation of recall probability, and words total learned.

Environments. Our simulation environment has the following
parameters: Target half-life hjy, Recall success/failure cost, Daily
cost limit, and Simulation duration.

Baselines. We compare SSP-MMC with five baseline scheduling
algorithms:

e RANDOM, which chooses a random interval from [1, hn] to
schedule the review.

o ANKI, a variant of SM-2[20], not require environmental param-
eters.

e HALF-LIFE, the half-life is used as the review interval.

e THRESHOLD, review when p is less than or equal to a certain
level (we use 90% which is the default in SuperMemo).

o MEMORIZE, an algorithm based on optimal control, with code
from the open-source repository of Tabibian et al. [17].

Metric. Our evaluation metrics include:

o THR (target half-life reached) is the number of words that reach
the target half-life.

e SRP (summation of recall probability) is the summation of all
learned words’ recall probability. The recall probability is set at
100% when the word reaches the target half-life to simulate that
the learner has formed a solid long-term memory.

e WTL (words total learned) is the number of total learned words.

Implementation details. We set a recall half-life of 360 days
(near one year) as the target half-life, and when the half-life of the
ITEM exceeds this value, it will not be scheduled for review. Then,
considering that the daily learning time of learners in the actual
scenario is roughly constant, we set 600s (10min) as the upper limit
of daily learning cost. When the accumulated cost during each
learning and review exceeds this limit, the review task is postponed
to the next day regardless of whether it is completed or not, ensuring
that each algorithm is compared at the same memory cost. We use
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Figure 10: The results of simulation

the average time spent by learners of 3s for successful recall and
9s for failed recall. Then, language learning is a long-term process,
and we set a simulation duration of 1000 days.

Analysis. The simulation results in Figure 10 show that:
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According to THR, SSP-MMC performs better than all baselines,
which is not surprising. THR is consistent with the optimization
goal of SSP-MMC, and SSP-MMC can reach the upper bound of
this metric.

To quantify the relative difference between the performance of
each algorithm, we compare the number of days for THR = 6000
(marked as % in Figure 10(a)): 466 days for SSP-MMC, 569 days for
ANKI, 533 days for THRESHOLD, and 793 days for MEMORIZE.
Compared to the THRESHOLD, SSP-MMC saves 12.6% of the time
of review.

The result on SRP is similar to that on THR. This means that the
learner following the schedules of the SSP-MMC will remember
the most.

On WTL, RANDOM beats all algorithms in the early stage be-
cause the learner can keep learning new words as long as the
scheduling algorithm does not schedule a review, but this is at
the cost of forgetting the already learned words. Besides, the SSP-
MMC outperforms other baselines because it minimizes the cost of
memorization and gives learners more time to learn new words.

6 CONCLUSION

We establish the first memory dataset containing complete time-
series information, design a long-term memory model based on
time-series information that can fit existing data well, and provide
a solid foundation for optimizing spaced repetition scheduling. The
memory cost of learners is minimized as the goal of spaced repeti-
tion software based on stochastic optimal control theory. We derive
a mathematically guaranteed scheduling algorithm for minimizing
memory cost. SSP-MMC combines the psychologically proven the-
ories of forgetting curve and spacing effect with modern machine
learning techniques to reduce the cost of learners in forming long-
term memory. Compared with the HLR model, the DHP model’s
accuracy is significantly improved in fitting the user’s long-term
memory. Moreover, the SSP-MMC scheduling algorithm outper-
forms the baselines. The algorithm was deployed in MaiMemo to
improve long-term memory efficiency for users. We provide tech-
nical details of the design and deployment in Appendix A.

The main future work is to improve the DHP model by consid-
ering the effect of user features on memory state and validating
the model in spaced repetition software beyond language learning.
In addition, the scenarios in which learners use spaced repetition
methods are diverse, and designing optimization metrics that match
learners’ goals is also an issue worth investigating.

7 DATA AND CODES

To facilitate research in this area, we have publicly released the
dataset and codes used in this paper at:
https://github.com/maimemo/SSP-MMC
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A DEPLOYMENT DESIGN

In this Appendix, we describe how the SSP-MMC algorithm was
deployed to MaiMemo for optimizing learners’ spaced repetition
schedules.

A.1 Architecture

Figure 11 shows the framework of the spaced repetition scheduler,
which is divided into two main parts: local in green and remote in
red.

Each time a user reviews a word, the memory behavior event
with time-series information (see Equation 3.1 and Table 1) will be
recorded in local, which we refer to as the User Review Logs. The
logs are uploaded to the remote after the learner has completed all
the reviews for the day.

The Full Review Logs must handle a large volume of writes,
needs to be retained permanently, and will not be updated once
written, so we use a streaming data service to write the log to the
data warehouse. In Data Pre-process ETL, we periodically calculate
the difficulty of all words and aggregate the training data needed for
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the DHP Memory Model which supplies the training environment
for the SSP-MMC Scheduling Algorithm.

After the model parameters and optimal policy are computed, the
remote push the relevant configs to local. Then the local predictor
and scheduler will load the new configs to predict the memory state
and schedule the review date for each word the user has learned.

A.2 Cold Start

In the cold-start phase, It can use a simple scheduling algorithm,
such as SM-2. Then the User Review Logs will be collected to the
Full Review Logs in the remote and pre-processed to compute dif-
ficulty and half-life. These data are used to fit the DHP model to
obtain model parameters and as an environment for the SSP-MMC
to derive optimal policy. The model parameters and optimal policy
in the remote will be sent to the local predictor and scheduler to
replace the original simple scheduling algorithm and obtain more
User Review Logs, which iteratively improve the DHP Memory
Model and the optimal policy generated by the SSP-MMC Sched-
uling Algorithm.

Remote

SSP-MMC
Scheduling
Algorithm

Word
Difficulty

Optimal
Policy

Local

Spaced Memory
Word Repetition State
Difficulty Scheduler
Words need
to review
e 9
Learner

Training
Environment

Remote Remote

Data
Pre-process
ETL

DHP
Memory
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Parameters

Local
Memory Full
3‘*!'9 Review
Predictor Logs
A
User Review )
Logs

Figure 11: Framework diagram of the spaced repetition system at MaiMemo
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