
Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Patrick Esser * Sumith Kulal Andreas Blattmann Rahim Entezari Jonas Müller Harry Saini Yam Levi
Dominik Lorenz Axel Sauer Frederic Boesel Dustin Podell Tim Dockhorn Zion English

Kyle Lacey Alex Goodwin Yannik Marek Robin Rombach *

Stability AI

Figure 1. High-resolution samples from our 8B rectified flow model, showcasing its capabilities in typography, precise prompt following
and spatial reasoning, attention to fine details, and high image quality across a wide variety of styles.

Abstract
Diffusion models create data from noise by invert-
ing the forward paths of data towards noise and
have emerged as a powerful generative modeling
technique for high-dimensional, perceptual data
such as images and videos. Rectified flow is a re-
cent generative model formulation that connects
data and noise in a straight line. Despite its better
theoretical properties and conceptual simplicity, it
is not yet decisively established as standard prac-
tice. In this work, we improve existing noise sam-
pling techniques for training rectified flow mod-
els by biasing them towards perceptually relevant
scales. Through a large-scale study, we demon-

*Equal contribution . <first.last>@stability.ai.

strate the superior performance of this approach
compared to established diffusion formulations
for high-resolution text-to-image synthesis. Ad-
ditionally, we present a novel transformer-based
architecture for text-to-image generation that uses
separate weights for the two modalities and en-
ables a bidirectional flow of information between
image and text tokens, improving text comprehen-
sion, typography, and human preference ratings.
We demonstrate that this architecture follows pre-
dictable scaling trends and correlates lower vali-
dation loss to improved text-to-image synthesis as
measured by various metrics and human evalua-
tions. Our largest models outperform state-of-the-
art models, and we will make our experimental
data, code, and model weights publicly available.

1

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

1. Introduction
Diffusion models create data from noise (Song et al., 2020).
They are trained to invert forward paths of data towards
random noise and, thus, in conjunction with approximation
and generalization properties of neural networks, can be
used to generate new data points that are not present in
the training data but follow the distribution of the training
data (Sohl-Dickstein et al., 2015; Song & Ermon, 2020).
This generative modeling technique has proven to be very
effective for modeling high-dimensional, perceptual data
such as images (Ho et al., 2020). In recent years, diffusion
models have become the de-facto approach for generating
high-resolution images and videos from natural language
inputs with impressive generalization capabilities (Saharia
et al., 2022b; Ramesh et al., 2022; Rombach et al., 2022;
Podell et al., 2023; Dai et al., 2023; Esser et al., 2023;
Blattmann et al., 2023b; Betker et al., 2023; Blattmann et al.,
2023a; Singer et al., 2022). Due to their iterative nature
and the associated computational costs, as well as the long
sampling times during inference, research on formulations
for more efficient training and/or faster sampling of these
models has increased (Karras et al., 2023; Liu et al., 2022).

While specifying a forward path from data to noise leads to
efficient training, it also raises the question of which path
to choose. This choice can have important implications
for sampling. For example, a forward process that fails to
remove all noise from the data can lead to a discrepancy
in training and test distribution and result in artifacts such
as gray image samples (Lin et al., 2024). Importantly, the
choice of the forward process also influences the learned
backward process and, thus, the sampling efficiency. While
curved paths require many integration steps to simulate the
process, a straight path could be simulated with a single
step and is less prone to error accumulation. Since each step
corresponds to an evaluation of the neural network, this has
a direct impact on the sampling speed.

A particular choice for the forward path is a so-called Rec-
tified Flow (Liu et al., 2022; Albergo & Vanden-Eijnden,
2022; Lipman et al., 2023), which connects data and noise
on a straight line. Although this model class has better
theoretical properties, it has not yet become decisively es-
tablished in practice. So far, some advantages have been
empirically demonstrated in small and medium-sized ex-
periments (Ma et al., 2024), but these are mostly limited to
class-conditional models. In this work, we change this by in-
troducing a re-weighting of the noise scales in rectified flow
models, similar to noise-predictive diffusion models (Ho
et al., 2020). Through a large-scale study, we compare
our new formulation to existing diffusion formulations and
demonstrate its benefits.

We show that the widely used approach for text-to-image
synthesis, where a fixed text representation is fed directly

into the model (e.g., via cross-attention (Vaswani et al.,
2017; Rombach et al., 2022)), is not ideal, and present
a new architecture that incorporates learnable streams for
both image and text tokens, which enables a two-way flow
of information between them. We combine this with our
improved rectified flow formulation and investigate its scala-
bility. We demonstrate a predictable scaling trend in the val-
idation loss and show that a lower validation loss correlates
strongly with improved automatic and human evaluations.

Our largest models outperform state-of-the art open models
such as SDXL (Podell et al., 2023), SDXL-Turbo (Sauer
et al., 2023), Pixart-α (Chen et al., 2023), and closed-source
models such as DALL-E 3 (Betker et al., 2023) both in
quantitative evaluation (Ghosh et al., 2023) of prompt un-
derstanding and human preference ratings.

The core contributions of our work are: (i) We conduct a
large-scale, systematic study on different diffusion model
and rectified flow formulations to identify the best setting.
For this purpose, we introduce new noise samplers for recti-
fied flow models that improve performance over previously
known samplers. (ii) We devise a novel, scalable architec-
ture for text-to-image synthesis that allows bi-directional
mixing between text and image token streams within the
network. We show its benefits compared to established back-
bones such as UViT (Hoogeboom et al., 2023) and DiT (Pee-
bles & Xie, 2023). Finally, we (iii) perform a scaling study
of our model and demonstrate that it follows predictable
scaling trends. We show that a lower validation loss cor-
relates strongly with improved text-to-image performance
assessed via metrics such as T2I-CompBench (Huang et al.,
2023), GenEval (Ghosh et al., 2023) and human ratings. We
make results, code, and model weights publicly available.

2. Simulation-Free Training of Flows
We consider generative models that define a mapping be-
tween samples x1 from a noise distribution p1 to samples
x0 from a data distribution p0 in terms of an ordinary differ-
ential equation (ODE),

dyt = vΘ(yt, t) dt , (1)

where the velocity v is parameterized by the weights Θ of
a neural network. Prior work by Chen et al. (2018) sug-
gested to directly solve Equation (1) via differentiable ODE
solvers. However, this process is computationally expensive,
especially for large network architectures that parameterize
vΘ(yt, t). A more efficient alternative is to directly regress
a vector field ut that generates a probability path between
p0 and p1. To construct such a ut, we define a forward
process, corresponding to a probability path pt between p0

and p1 = N (0, 1), as

zt = atx0 + btε where ε ∼ N (0, I) . (2)

2

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

For a0 = 1, b0 = 0, a1 = 0 and b1 = 1, the marginals,

pt(zt) = Eε∼N (0,I)pt(zt|ε) , (3)

are consistent with the data and noise distribution.

To express the relationship between zt, x0 and ε, we intro-
duce ψt and ut as

ψt(·|ε) : x0 7→ atx0 + btε (4)

ut(z|ε) := ψ′t(ψ
−1
t (z|ε)|ε) (5)

Since zt can be written as solution to the ODE z′t = ut(zt|ε),
with initial value z0 = x0, ut(·|ε) generates pt(·|ε). Re-
markably, one can construct a marginal vector field ut which
generates the marginal probability paths pt (Lipman et al.,
2023) (see B.1), using the conditional vector fields ut(·|ε):

ut(z) = Eε∼N (0,I)ut(z|ε)
pt(z|ε)
pt(z)

(6)

While regressing ut with the Flow Matching objective

LFM = Et,pt(z)||vΘ(z, t)− ut(z)||22. (7)

directly is intractable due to the marginalization in Equa-
tion 6, Conditional Flow Matching (see B.1),

LCFM = Et,pt(z|ε),p(ε)||vΘ(z, t)− ut(z|ε)||22 , (8)

with the conditional vector fields ut(z|ε) provides an equiv-
alent yet tractable objective.

To convert the loss into an explicit form we insert
ψ′t(x0|ε) = a′tx0 + b′tε and ψ−1

t (z|ε) = z−btε
at

into (5)

z′t = ut(zt|ε) =
a′t
at
zt − εbt(

a′t
at
− b′t
bt

) . (9)

Now, consider the signal-to-noise ratio λt := log
a2t
b2t

. With

λ′t = 2(
a′t
at
− b′t

bt
), we can rewrite Equation (9) as

ut(zt|ε) =
a′t
at
zt −

bt
2
λ′tε (10)

Next, we use Equation (10) to reparameterize Equation (8)
as a noise-prediction objective:

LCFM = Et,pt(z|ε),p(ε)||vΘ(z, t)− a′t
at
z +

bt
2
λ′tε||22 (11)

= Et,pt(z|ε),p(ε)
(
−bt

2
λ′t

)2

||εΘ(z, t)− ε||22 (12)

where we defined εΘ := −2
λ′
tbt

(vΘ − a′t
at
z).

Note that the optimum of the above objective does not
change when introducing a time-dependent weighting. Thus,

one can derive various weighted loss functions that provide
a signal towards the desired solution but might affect the
optimization trajectory. For a unified analysis of different
approaches, including classic diffusion formulations, we
can write the objective in the following form (following
Kingma & Gao (2023)):

Lw(x0) = −1

2
Et∼U(t),ε∼N (0,I)

[
wtλ

′
t‖εΘ(zt, t)− ε‖2

]
,

where wt = − 1
2λ
′
tb

2
t corresponds to LCFM .

3. Flow Trajectories
In this work, we consider different variants of the above
formalism that we briefly describe in the following.

Rectified Flow Rectified Flows (RFs) (Liu et al., 2022;
Albergo & Vanden-Eijnden, 2022; Lipman et al., 2023)
define the forward process as straight paths between the
data distribution and a standard normal distribution, i.e.

zt = (1− t)x0 + tε , (13)

and uses LCFM which then corresponds to wRF
t = t

1−t .
The network output directly parameterizes the velocity vΘ.

EDM EDM (Karras et al., 2022) uses a forward process
of the form

zt = x0 + btε (14)

where (Kingma & Gao, 2023) bt = expF−1
N (t|Pm, P 2

s)
with F−1

N being the quantile function of the normal distribu-
tion with mean Pm and variance P 2

s . Note that this choice
results in

λt ∼ N (−2Pm, (2Ps)
2) for t ∼ U(0, 1) (15)

The network is parameterized through an F-prediction
(Kingma & Gao, 2023; Karras et al., 2022) and the loss
can be written as LwEDM

t
with

wEDM
t = N (λt| − 2Pm, (2Ps)

2)(e−λt + 0.52) (16)

Cosine (Nichol & Dhariwal, 2021) proposed a forward
process of the form

zt = cos
(π

2
t
)
x0 + sin

(π
2
t
)
ε . (17)

In combination with an ε-parameterization and loss, this
corresponds to a weighting wt = sech(λt/2). When com-
bined with a v-prediction loss (Kingma & Gao, 2023), the
weighting is given by wt = e−λt/2.

3

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

(LDM-)Linear LDM (Rombach et al., 2022) uses a mod-
ification of the DDPM schedule (Ho et al., 2020). Both are
variance preserving schedules, i.e. bt =

√
1− a2

t , and de-
fine at for discrete timesteps t = 0, . . . , T − 1 in terms
of diffusion coefficients βt as at = (

∏t
s=0(1 − βs))

1
2 .

For given boundary values β0 and βT−1, DDPM uses
βt = β0 + t

T−1 (βT−1 − β0) and LDM uses βt =(√
β0 + t

T−1 (
√
βT−1 −

√
β0)
)2

.

3.1. Tailored SNR Samplers for RF models

The RF loss trains the velocity vΘ uniformly on all timesteps
in [0, 1]. Intuitively, however, the resulting velocity predic-
tion target ε − x0 is more difficult for t in the middle of
[0, 1], since for t = 0, the optimal prediction is the mean
of p1, and for t = 1 the optimal prediction is the mean of
p0. In general, changing the distribution over t from the
commonly used uniform distribution U(t) to a distribution
with density π(t) is equivalent to a weighted loss Lwπt with

wπt =
t

1− t
π(t) (18)

Thus, we aim to give more weight to intermediate timesteps
by sampling them more frequently. Next, we describe the
timestep densities π(t) that we use to train our models.

Logit-Normal Sampling One option for a distribution
that puts more weight on intermediate steps is the logit-
normal distribution (Atchison & Shen, 1980). Its density,

πln(t;m, s) =
1

s
√

2π

1

t(1− t)
exp
(
− (logit(t)−m)2

2s2

)
,

(19)
where logit(t) = log t

1−t , has a location parameter, m, and
a scale parameter, s. The location parameter enables us to
bias the training timesteps towards either data p0 (negative
m) or noise p1 (positive m). As shown in Figure 11, the
scale parameters controls how wide the distribution is.

In practice, we sample the random variable u from a nor-
mal distribution u ∼ N (u;m, s) and map it through the
standard logistic function.

Mode Sampling with Heavy Tails The logit-normal den-
sity always vanishes at the endpoints 0 and 1. To study
whether this has adverse effects on the performance, we
also use a timestep sampling distribution with strictly pos-
itive density on [0, 1]. For a scale parameter s, we define

fmode(u; s) = 1− u− s ·
(

cos2
(π

2
u
)
− 1 + u

)
. (20)

For −1 ≤ s ≤ 2
π−2 , this function is monotonic, and we

can use it to sample from the implied density πmode(t; s) =

∣∣ d
dtf
−1
mode(t)

∣∣. As seen in Figure 11, the scale parameter
controls the degree to which either the midpoint (positive
s) or the endpoints (negative s) are favored during sam-
pling. This formulation also includes a uniform weighting
πmode(t; s = 0) = U(t) for s = 0, which has been used
widely in previous works on Rectified Flows (Liu et al.,
2022; Ma et al., 2024).

CosMap Finally, we also consider the cosine schedule
(Nichol & Dhariwal, 2021) from Section 3 in the RF setting.
In particular, we are looking for a mapping f : u 7→ f(u) =
t, u ∈ [0, 1], such that the log-snr matches that of the cosine
schedule: 2 log

cos(π2 u)

sin(π2 u) = 2 log 1−f(u)
f(u) . Solving for f , we

obtain for u ∼ U(u)

t = f(u) = 1− 1

tan(π2u) + 1
, (21)

from which we obtain the density

πCosMap(t) =

∣∣∣∣ ddtf−1(t)

∣∣∣∣ =
2

π − 2πt+ 2πt2
. (22)

4. Text-to-Image Architecture
For text-conditional sampling of images, our model has to
take both modalities, text and images, into account. We
use pretrained models to derive suitable representations and
then describe the architecture of our diffusion backbone. An
overview of this is presented in Figure 2.

Our general setup follows LDM (Rombach et al., 2022)
for training text-to-image models in the latent space of a
pretrained autoencoder. Similar to the encoding of images to
latent representations, we also follow previous approaches
(Saharia et al., 2022b; Balaji et al., 2022) and encode the text
conditioning c using pretrained, frozen text models. Details
can be found in Appendix B.2.

Multimodal Diffusion Backbone Our architecture builds
upon the DiT (Peebles & Xie, 2023) architecture. DiT only
considers class conditional image generation and uses a
modulation mechanism to condition the network on both
the timestep of the diffusion process and the class label.
Similarly, we use embeddings of the timestep t and cvec
as inputs to the modulation mechanism. However, as the
pooled text representation retains only coarse-grained infor-
mation about the text input (Podell et al., 2023), the network
also requires information from the sequence representation
cctxt.

We construct a sequence consisting of embeddings of the
text and image inputs. Specifically, we add positional en-
codings and flatten 2 × 2 patches of the latent pixel rep-
resentation x ∈ Rh×w×c to a patch encoding sequence of
length 1

2 · h ·
1
2 · w. After embedding this patch encoding

and the text encoding cctxt to a common dimensionality, we

4

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Caption

CLIP-L/14CLIP-G/14 T5 XXL

Po
ol

ed

Linear

c

MLP

MLP

Sinusoidal Encoding

Timestep

+ y

Noised Latent

Patching

Linear

+
Positional

Embedding

x

MM-DiT-Block 1

MM-DiT-Block 2

. . .

MM-DiT-Block d

Modulation

Linear

Unpatching

Output

77 + 77 tokens

4096
channel

(a) Overview of all components.

c x

Layernorm

Mod: αc · •+ βc

Linear

Attention

Linear

∗

+

Layernorm

Mod: δc · •+ εc

MLP

∗

+

αc

βc

γc

δc

εc

ζc

y

SiLU

Linear

Layernorm

Mod: αx · •+ βx

Linear

Linear

∗

+

Layernorm

Mod: δx · •+ εx

MLP

∗

+

αx

βx

γx

δx

εx

ζx

SiLU

Linear

KQ V

�
�

�

Opt.
RMS-
Norm

Opt.
RMS-
Norm

Opt.
RMS-
Norm

Opt.
RMS-
Norm

(b) One MM-DiT block

Figure 2. Our model architecture. Concatenation is indicated by � and element-wise multiplication by ∗. The RMS-Norm for Q and K
can be added to stabilize training runs. Best viewed zoomed in.

concatenate the two sequences. We then follow DiT and
apply a sequence of modulated attention and MLPs.

Since text and image embeddings are conceptually quite
different, we use two separate sets of weights for the two
modalities. As shown in Figure 2b, this is equivalent to
having two independent transformers for each modality, but
joining the sequences of the two modalities for the attention
operation, such that both representations can work in their
own space yet take the other one into account.

For our scaling experiments, we parameterize the size of
the model in terms of the model’s depth d, i.e. the number
of attention blocks, by setting the hidden size to 64 · d
(expanded to 4 · 64 · d channels in the MLP blocks), and the
number of attention heads equal to d.

5. Experiments
5.1. Improving Rectified Flows

We aim to understand which of the approaches for
simulation-free training of normalizing flows as in Equa-
tion 1 is the most efficient. To enable comparisons across
different approaches, we control for the optimization algo-
rithm, the model architecture, the dataset and samplers. In

addition, the losses of different approaches are incomparable
and also do not necessarily correlate with the quality of out-
put samples; hence we need evaluation metrics that allow for
a comparison between approaches. We train models on Ima-
geNet (Russakovsky et al., 2014) and CC12M (Changpinyo
et al., 2021), and evaluate both the training and the EMA
weights of the models during training using validation losses,
CLIP scores (Radford et al., 2021; Hessel et al., 2021), and
FID (Heusel et al., 2017) under different sampler settings
(different guidance scales and sampling steps). We calcu-
late the FID on CLIP features as proposed by (Sauer et al.,
2021). All metrics are evaluated on the COCO-2014 valida-
tion split (Lin et al., 2014). Full details on the training and
sampling hyperparameters are provided in Appendix B.3.

5.1.1. RESULTS

We train each of 61 different formulations on the two
datasets. We include the following variants from Section 3:

• Both ε- and v-prediction loss with linear
(eps/linear, v/linear) and cosine (eps/cos,
v/cos) schedule.

• RF loss with πmode(t; s) (rf/mode(s)) with 7 val-
ues for s chosen uniformly between −1 and 1.75, and

5

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

rank averaged over

variant all 5 steps 50 steps

rf/lognorm(0.00, 1.00) 1.54 1.25 1.50
rf/lognorm(1.00, 0.60) 2.08 3.50 2.00
rf/lognorm(0.50, 0.60) 2.71 8.50 1.00
rf/mode(1.29) 2.75 3.25 3.00
rf/lognorm(0.50, 1.00) 2.83 1.50 2.50
eps/linear 2.88 4.25 2.75
rf/mode(1.75) 3.33 2.75 2.75
rf/cosmap 4.13 3.75 4.00
edm(0.00, 0.60) 5.63 13.25 3.25
rf 5.67 6.50 5.75
v/linear 6.83 5.75 7.75
edm(0.60, 1.20) 9.00 13.00 9.00
v/cos 9.17 12.25 8.75
edm/cos 11.04 14.25 11.25
edm/rf 13.04 15.25 13.25
edm(-1.20, 1.20) 15.58 20.25 15.00

Table 1. Global ranking of variants. For this ranking, we apply
non-dominated sorting averaged over EMA and non-EMA weights,
two datasets and different sampling settings.

ImageNet CC12M

variant CLIP FID CLIP FID

rf 0.247 49.70 0.217 94.90
edm(-1.20, 1.20) 0.236 63.12 0.200 116.60
eps/linear 0.245 48.42 0.222 90.34
v/cos 0.244 50.74 0.209 97.87
v/linear 0.246 51.68 0.217 100.76

rf/lognorm(0.50, 0.60) 0.256 80.41 0.233 120.84
rf/mode(1.75) 0.253 44.39 0.218 94.06
rf/lognorm(1.00, 0.60) 0.254 114.26 0.234 147.69
rf/lognorm(-0.50, 1.00) 0.248 45.64 0.219 89.70

rf/lognorm(0.00, 1.00) 0.250 45.78 0.224 89.91

Table 2. Metrics for different variants. FID and CLIP scores of
different variants with 25 sampling steps. We highlight the best,
second best, and third best entries.

additionally for s = 1.0 and s = 0 which corresponds
to uniform timestep sampling (rf/mode).

• RF loss with πln(t;m, s) (rf/lognorm(m, s))
with 30 values for (m, s) in the grid with m uniform
between −1 and 1, and s uniform between 0.2 and 2.2.

• RF loss with πCosMap(t) (rf/cosmap).
• EDM (edm(Pm, Ps)) with 15 values for Pm chosen

uniformly between −1.2 and 1.2 and Ps uniform be-
tween 0.6 and 1.8. Note that Pm, Ps = (−1.2, 1.2)
corresponds to the parameters in (Karras et al., 2022).

• EDM with a schedule such that it matches the log-SNR
weighting of rf (edm/rf) and one that matches the
log-SNR weighting of v/cos (edm/cos).

For each run, we select the step with minimal validation loss
when evaluated with EMA weights and then collect CLIP
scores and FID obtained with 6 different sampler settings

both with and without EMA weights.

For all 24 combinations of sampler settings, EMA weights,
and dataset choice, we rank the different formulations using
a non-dominated sorting algorithm. For this, we repeatedly
compute the variants that are Pareto optimal according to
CLIP and FID scores, assign those variants the current iter-
ation index, remove those variants, and continue with the
remaining ones until all variants get ranked. Finally, we
average those ranks over the 24 different control settings.

We present the results in Tab. 1, where we only show the
two best-performing variants for those variants that were
evaluated with different hyperparameters. We also show
ranks where we restrict the averaging over sampler settings
with 5 steps and with 50 steps.

We observe that rf/lognorm(0.00, 1.00) consis-
tently achieves a good rank. It outperforms a rectified
flow formulation with uniform timestep sampling (rf) and
thus confirms our hypothesis that intermediate timesteps are
more important. Among all the variants, only rectified flow
formulations with modified timestep sampling perform bet-
ter than the LDM-Linear (Rombach et al., 2022) formulation
(eps/linear) used previously.

We also observe that some variants perform well in some
settings but worse in others, e.g. rf/lognorm(0.50,
0.60) is the best-performing variant with 50 sampling
steps but much worse (average rank 8.5) with 5 sampling
steps. We observe a similar behavior with respect to the
two metrics in Tab. 2. The first group shows representa-
tive variants and their metrics on both datasets with 25
sampling steps. The next group shows the variants that
achieve the best CLIP and FID scores. With the exception
of rf/mode(1.75), these variants typically perform very
well in one metric but relatively badly in the other. In con-
trast, we once again observe that rf/lognorm(0.00,
1.00) achieves good performance across metrics and
datasets, where it obtains the third-best scores two out of
four times and once the second-best performance.

Finally, we illustrate the qualitative behavior of different
formulations in Figure 3, where we use different colors
for different groups of formulations (edm, rf, eps and
v). Rectified flow formulations generally perform well and,
compared to other formulations, their performance degrades
less when reducing the number of sampling steps.

5.2. Improving Modality Specific Representations

Having found a formulation in the previous section that
allows rectified flow models to not only compete with estab-
lished diffusion formulations such as LDM-Linear (Rom-
bach et al., 2022) or EDM (Karras et al., 2022), but even
outperforms them, we now turn to the application of our
formulation to high-resolution text-to-image synthesis. Ac-

6

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

10 20 30 40 50

60

80

100

120

140
edm(-1.20, 1.20)
eps/linear
rf/lognorm(0.00, 1.00)
rf
v/cos
v/linear

number of sampling steps

FI
D

Figure 3. Rectified flows are sample efficient. Rectified Flows
perform better then other formulations when sampling fewer steps.
For 25 and more steps, only rf/lognorm(0.00, 1.00) re-
mains competitive to eps/linear.

Metric 4 chn 8 chn 16 chn

FID (↓) 2.41 1.56 1.06
Perceptual Similarity (↓) 0.85 0.68 0.45
SSIM (↑) 0.75 0.79 0.86
PSNR (↑) 25.12 26.40 28.62

Table 3. Improved Autoencoders. Reconstruction performance
metrics for different channel configurations. The downsampling
factor for all models is f = 8.

cordingly, the final performance of our algorithm depends
not only on the training formulation, but also on the parame-
terization via a neural network and the quality of the image
and text representations we use. In the following sections,
we describe how we improve all these components before
scaling our final method in Section 5.3.

5.2.1. IMPROVED AUTOENCODERS

Latent diffusion models achieve high efficiency by operating
in the latent space of a pretrained autoencoder (Rombach
et al., 2022), which maps an input RGBX ∈ RH×W×3 into
a lower-dimensional space x = E(X) ∈ Rh×w×d. The
reconstruction quality of this autoencoder provides an upper
bound on the achievable image quality after latent diffusion
training. Similar to Dai et al. (2023), we find that increasing
the number of latent channels d significantly boosts recon-
struction performance, see Table 3. Intuitively, predicting
latents with higher d is a more difficult task, and thus mod-
els with increased capacity should be able to perform better
for larger d, ultimately achieving higher image quality. We
confirm this hypothesis in Figure 10, where we see that the
d = 16 autoencoder exhibits better scaling performance in
terms of sample FID. For the remainder of this paper, we
thus choose d = 16.

5.2.2. IMPROVED CAPTIONS

Betker et al. (2023) demonstrated that synthetically gen-
erated captions can greatly improve text-to-image models
trained at scale. This is due to the oftentimes simplistic

Original Captions 50/50 Mix

success rate [%] success rate [%]

Color Attribution 11.75 24.75
Colors 71.54 68.09
Position 6.50 18.00
Counting 33.44 41.56
Single Object 95.00 93.75
Two Objects 41.41 52.53

Overall score 43.27 49.78

Table 4. Improved Captions. Using a 50/50 mixing ratio of
synthetic (via CogVLM (Wang et al., 2023)) and original cap-
tions improves text-to-image performance. Assessed via the
GenEval (Ghosh et al., 2023) benchmark.

nature of the human-generated captions that come with
large-scale image datasets, which overly focus on the image
subject and usually omit details describing the background
or composition of the scene, or, if applicable, displayed
text (Betker et al., 2023). We follow their approach and
use an off-the-shelf, state-of-the-art vision-language model,
CogVLM (Wang et al., 2023), to create synthetic annotations
for our large-scale image dataset. As synthetic captions may
cause a text-to-image model to forget about certain concepts
not present in the VLM’s knowledge corpus, we use a ratio
of 50 % original and 50 % synthetic captions.

To assess the effect of training on this caption mix, we train
two d = 15 MM-DiT models for 250k steps, one on only
original captions and the other on the 50/50 mix. We evalu-
ate the trained models using the GenEval benchmark (Ghosh
et al., 2023) in Table 4. The results demonstrate that the
model trained with the addition of synthetic captions clearly
outperforms the model that only utilizes original captions.
We thus use the 50/50 synthetic/original caption mix for the
remainder of this work.

5.2.3. IMPROVED TEXT-TO-IMAGE BACKBONES

In this section, we compare the performance of existing
transformer-based diffusion backbones with our novel mul-
timodal transformer-based diffusion backbone, MM-DiT , as
introduced in Section 4. MM-DiT is specifically designed to
handle different domains, here text and image tokens, using
(two) different sets of trainable model weights. More specif-
ically, we follow the experimental setup from Section 5.1
and compare text-to-image performance on CC12M of DiT,
CrossDiT (DiT but with cross-attending to the text tokens
instead of sequence-wise concatenation (Chen et al., 2023))
and our MM-DiT . For MM-DiT , we compare models with
two sets of weights and three sets of weights, where the lat-
ter handles the CLIP (Radford et al., 2021) and T5 (Raffel
et al., 2019) tokens (c.f . Section 4) separately. Note that DiT
(w/ concatenation of text and image tokens as in Section 4)
can be interpreted as a special case of MM-DiT with one

7

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

a space elevator,
cinematic scifi art

A cheeseburger with juicy
beef patties and melted

cheese sits on top of a toilet
that looks like a throne and
stands in the middle of the

royal chamber.

a hole in the floor of my
bathroom with small
gremlins living in it

a small office made out of
car parts

This dreamlike digital art
captures a vibrant,

kaleidoscopic bird in a lush
rainforest.

human life depicted entirely
out of fractals

an origami pig on
fire in the middle of
a dark room with a
pentagram on the

floor

an old rusted robot wearing pants and a jacket riding skis in a supermarket. smiling cartoon dog sits at a table, coffee mug on hand, as a room goes up in flames. “This is fine,”
the dog assures himself.

A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a hippopotamus. This imaginative creature features the distinctive, bulky body of a hippo, but with a texture and
appearance resembling a golden-brown, crispy waffle. The creature might have elements like waffle squares across its skin and a syrup-like sheen. It’s set in a surreal environment that playfully combines

a natural water habitat of a hippo with elements of a breakfast table setting, possibly including oversized utensils or plates in the background. The image should evoke a sense of playful absurdity and
culinary fantasy.

8

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Figure 4. Training dynamics of model architectures. Compara-
tive analysis of DiT, CrossDiT, UViT, and MM-DiT on CC12M,
focusing on validation loss, CLIP score, and FID. Our proposed
MM-DiT performs favorably across all metrics.

shared set of weights for all modalities. Finally, we consider
the UViT (Hoogeboom et al., 2023) architecture as a hybrid
between the widely used UNets and transformer variants.

We analyze the convergence behavior of these architectures
in Figure 4: Vanilla DiT underperforms UViT. The cross-
attention DiT variant CrossDiT achieves better performance
than UViT, although UViT seems to learn much faster ini-
tially. Our MM-DiT variant significantly outperforms the
cross-attention and vanilla variants. We observe only a small
gain when using three parameter sets instead of two (at the
cost of increased parameter count and VRAM usage), and
thus opt for the former option for the remainder of this work.

5.3. Training at Scale

Before scaling up, we filter and preencode our data to ensure
safe and efficient pretraining. Then, all previous consider-
ations of diffusion formulations, architectures, and data
culminate in the last section, where we scale our models up
to 8B parameters.

5.3.1. DATA PREPROCESSING

Pre-Training Mitigations Training data significantly im-
pacts a generative model’s abilities. Consequently, data
filtering is effective at constraining undesirable capabili-
ties (Nichol, 2022). Before training at sale, we filter our
data for the following categories: (i) Sexual content: We
use NSFW-detection models to filter for explicit content.
(ii) Aesthetics: We remove images for which our rating
systems predict a low score. (iii) Regurgitation: We use a
cluster-based deduplication method to remove perceptual
and semantic duplicates from the training data; see Ap-
pendix E.2.

Precomputing Image and Text Embeddings Our model
uses the output of multiple pretrained, frozen networks as in-
puts (autoencoder latents and text encoder representations).
Since these outputs are constant during training, we precom-
pute them once for the entire dataset. We provide a detailed
discussion of our approach in Appendix E.1.

Figure 5. Effects of QK-normalization. Normalizing the Q- and
K-embeddings before calculating the attention matrix prevents the
attention-logit growth instability (left), which causes the attention
entropy to collapse (right) and has been previously reported in the
discriminative ViT literature (Dehghani et al., 2023; Wortsman
et al., 2023). In contrast with these previous works, we observe
this instability in the last transformer blocks of our networks. Max-
imum attention logits and attention entropies are shown averaged
over the last 5 blocks of a 2B (d=24) model.

5.3.2. FINETUNING ON HIGH RESOLUTIONS

QK-Normalization In general, we pretrain all of our
models on low-resolution images of size 2562 pixels. Next,
we finetune our models on higher resolutions with mixed
aspect ratios (see next paragraph for details). We find that,
when moving to high resolutions, mixed precision train-
ing can become unstable and the loss diverges. This can
be remedied by switching to full precision training — but
comes with a ∼ 2× performance drop compared to mixed-
precision training. A more efficient alternative is reported
in the (discriminative) ViT literature: Dehghani et al. (2023)
observe that the training of large vision transformer models
diverges because the attention entropy grows uncontrollably.
To avoid this, Dehghani et al. (2023) propose to normalize
Q and K before the attention operation. We follow this
approach and use RMSNorm (Zhang & Sennrich, 2019)
with learnable scale in both streams of our MMDiT archi-
tecture for our models, see Figure 2. As demonstrated in
Figure 5, the additional normalization prevents the attention
logit growth instability, confirming findings by Dehghani
et al. (2023) and Wortsman et al. (2023) and enables efficient
training at bf16-mixed (Chen et al., 2019) precision when
combined with ε = 10−15 in the AdamW (Loshchilov &
Hutter, 2017) optimizer. This technique can also be applied
on pretrained models that have not used qk-normalization
during pretraining: The model quickly adapts to the addi-
tional normalization layers and trains more stably. Finally,
we would like to point out that although this method can
generally help to stabilize the training of large models, it is
not a universal recipe and may need to be adapted depending
on the exact training setup.

Positional Encodings for Varying Aspect Ratios After
training on a fixed 256 × 256 resolution we aim to (i) in-
crease the resolution and resolution and (ii) enable inference
with flexible aspect ratios. Since we use 2d positional fre-

9

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Figure 6. Timestep shifting at higher resolutions. Top right: Hu-
man quality preference rating when applying the shifting based
on Equation (23). Bottom row: A 5122 model trained and sam-
pled with

√
m/n = 1.0 (top) and

√
m/n = 3.0 (bottom). See

Section 5.3.2.

quency embeddings we have to adapt them based on the
resolution. In the multi-aspect ratio setting, a direct inter-
polation of the embeddings as in (Dosovitskiy et al., 2020)
would not reflect the side lengths correctly. Instead we use
a combination of extended and interpolated position grids
which are subsequently frequency embedded.

For a target resolution of S2 pixels, we use bucketed sam-
pling (NovelAI, 2022; Podell et al., 2023) such that that each
batch consists of images of a homogeneous size H ×W ,
where H · W ≈ S2. For the maximum and minimum
training aspect ratios, this results in the maximum values for
width,Wmax, and height,Hmax, that will be encountered. Let
hmax = Hmax/16, wmax = Wmax/16 and s = S/16 be the
corresponding sizes in latent space (a factor 8) after patching
(a factor 2). Based on these values, we construct a vertical
position grid with the values ((p− hmax−s

2) · 256
S)hmax−1

p=0 and
correspondingly for the horizontal positions. We then center-
crop from the resulting positional 2d grid before embedding
it.

Resolution-dependent shifting of timestep schedules
Intuitively, since higher resolutions have more pixels, we
need more noise to destroy their signal. Assume we are
working in a resolution with n = H ·W pixels. Now, con-
sider a ”constant” image, i.e. one where every pixel has the
value c. The forward process produces zt = (1− t)c1+ tε,
where both 1 and ε ∈ Rn. Thus, zt provides n observations
of the random variable Y = (1 − t)c + tη with c and η
in R, and η follows a standard normal distribution. Thus,
E(Y) = (1− t)c and σ(Y) = t. We can therefore recover
c via c = 1

1−tE(Y), and the error between c and its sam-
ple estimate ĉ = 1

1−t
∑n
i=1 zt,i has a standard deviation of

Figure 7. Human Preference Evaluation against currrent
closed and open SOTA generative image models. Our 8B model
compares favorable against current state-of-the-art text-to-image
models when evaluated on the parti-prompts (Yu et al., 2022)
across the categories visual quality, prompt following and typogra-
phy generation.

σ(t, n) = t
1−t

√
1
n (because the standard error of the mean

for Y has deviation t√
n

). So if one already knows that the
image z0 was constant across its pixels, σ(t, n) represents
the degree of uncertainty about z0. For example, we imme-
diately see that doubling the width and height leads to half
the uncertainty at any given time 0 < t < 1. But, we can
now map a timestep tn at resolution n to a timestep tm at
resolution m that results in the same degree of uncertainty
via the ansatz σ(tn, n) = σ(tm,m). Solving for tm gives

tm =

√
m
n tn

1 + (
√

m
n − 1)tn

(23)

We visualize this shifting function in Figure 6. Note that the
assumption of constant images is not realistic. To find good
values for the shift value α :−

√
m
n during inference, we

apply them to the sampling steps of a model trained at reso-
lution 1024× 1024 and run a human preference study. The
results in Figure 6 show a strong preference for samples with
shifts greater than 1.5 but less drastic differences among the
higher shift values. In our subsequent experiments, we thus
use a shift value of α = 3.0 both during training and sam-
pling at resolution 1024× 1024. A qualitative comparison
between samples after 8k training steps with and without
such a shift can be found in Figure 6. Finally, note that
Equation 23 implies a log-SNR shift of log n

m similar to
(Hoogeboom et al., 2023):

λtm = 2 log
1− tn√
m
n tn

(24)

= λtn − 2 logα = λtn − log
m

n
. (25)

10

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

After the shifted training at resolution 1024×1024, we align
the model using Direct Preference Optimization (DPO) as
described in Appendix C.

5.3.3. RESULTS

In Figure 8, we examine the effect of training our MM-DiT
at scale. For images, we conduct a large scaling study and
train models with different numbers of parameters for 500k
steps on 2562 pixels resolution using preencoded data, c.f .
Appendix E.1, with a batch size of 4096. We train on 2× 2
patches (Peebles & Xie, 2023), and report validation losses
on the CoCo dataset (Lin et al., 2014) every 50k steps. In
particular, to reduce noise in the validation loss signal, we
sample loss levels equidistant in t ∈ (0, 1) and compute
validation loss for each level separately. We then average
the loss across all but the last (t = 1) levels.

Similarly, we conduct a preliminary scaling study of our
MM-DiT on videos. To this end we start from the pretrained
image weights and additionally use a 2x temporal patching.
We follow Blattmann et al. (2023b) and feed data to the
pretrained model by collapsing the temporal into the batch
axis. In each attention layer we rearrange the representation
in the visual stream and add a full attention over all spatio-
temporal tokens after the spatial attention operation before
the final feedforward layer. Our video models are trained for
140k steps with a batch size of 512 on videos comprising
16 frames with 2562 pixels. We report validation losses on
the Kinetics dataset (Carreira & Zisserman, 2018) every 5k
steps. Note that our reported FLOPs for video training in
Figure 8 are only FLOPs from video training and do not
include the FLOPs from image pretraining.

For both the image and video domains, we observe a smooth
decrease in the validation loss when increasing model size
and training steps. We find the validation loss to be highly
correlated to comprehensive evaluation metrics (Comp-
Bench (Huang et al., 2023), GenEval (Ghosh et al., 2023))
and to human preference. These results support the valida-
tion loss as a simple and general measure of model perfor-
mance. Our results do not show saturation neither for image
not for video models.

Figure 12 illustrates how training a larger model for longer
impacts sample quality. Tab. 5 shows the results of GenEval
in full. When applying the methods presented in Sec-
tion 5.3.2 and increasing training image resolution, our
biggest model excels in most categories and outperforms
DALLE 3 (Betker et al., 2023), the current state of the art in
prompt comprehension, in overall score.

Our d = 38 model outperforms current proprietary (Betker
et al., 2023; ide, 2024) and open (Sauer et al., 2023; pla,
2024; Chen et al., 2023; Pernias et al., 2023) SOTA gener-
ative image models in human preference evaluation on the

Model Overall

Objects

Counting Colors Position
Color

Single Two Attribution

minDALL-E 0.23 0.73 0.11 0.12 0.37 0.02 0.01
SD v1.5 0.43 0.97 0.38 0.35 0.76 0.04 0.06
PixArt-alpha 0.48 0.98 0.50 0.44 0.80 0.08 0.07
SD v2.1 0.50 0.98 0.51 0.44 0.85 0.07 0.17
DALL-E 2 0.52 0.94 0.66 0.49 0.77 0.10 0.19
SDXL 0.55 0.98 0.74 0.39 0.85 0.15 0.23
SDXL Turbo 0.55 1.00 0.72 0.49 0.80 0.10 0.18
IF-XL 0.61 0.97 0.74 0.66 0.81 0.13 0.35
DALL-E 3 0.67 0.96 0.87 0.47 0.83 0.43 0.45

Ours (depth=18), 5122 0.58 0.97 0.72 0.52 0.78 0.16 0.34
Ours (depth=24), 5122 0.62 0.98 0.74 0.63 0.67 0.34 0.36
Ours (depth=30), 5122 0.64 0.96 0.80 0.65 0.73 0.33 0.37
Ours (depth=38), 5122 0.68 0.98 0.84 0.66 0.74 0.40 0.43
Ours (depth=38), 5122 w/DPO 0.71 0.98 0.89 0.73 0.83 0.34 0.47
Ours (depth=38), 10242 w/DPO 0.74 0.99 0.94 0.72 0.89 0.33 0.60

Table 5. GenEval comparisons. Our largest model (depth=38)
outperforms all current open models and DALLE-3 (Betker et al.,
2023) on GenEval (Ghosh et al., 2023). We highlight the best,
second best, and third best entries. For DPO, see Appendix C.

relative CLIP score decrease [%]

5/50 steps 10/50 steps 20/50 steps path length

depth=15 4.30 0.86 0.21 191.13
depth=30 3.59 0.70 0.24 187.96
depth=38 2.71 0.14 0.08 185.96

Table 6. Impact of model size on sampling efficiency. The table
shows the relative performance decrease relative to CLIP scores
evaluated using 50 sampling steps at a fixed seed. Larger models
can be sampled using fewer steps, which we attribute to increased
robustness and better fitting the straight-path objective of rectified
flow models, resulting in shorter path lengths. Path length is
calculated by summing up ‖vθ · dt‖ over 50 steps.

Parti-prompts benchmark (Yu et al., 2022) in the categories
visual aesthetics, prompt following and typography gener-
ation, c.f . Figure 7. For evaluating human preference in
these categories, raters were shown pairwise outputs from
two models, and asked to answer the following questions:
Prompt following: Which image looks more representative
to the text shown above and faithfully follows it?
Visual aesthetics: Given the prompt, which image is of
higher-quality and aesthetically more pleasing?
Typography: Which image more accurately shows/displays
the text specified in the above description? More accurate
spelling is preferred! Ignore other aspects.

Lastly, Table 6 highlights an intriguing result: not only do
bigger models perform better, they also require fewer steps
to reach their peak performance.

Flexible Text Encoders While the main motivation for
using multiple text-encoders is boosting the overall model
performance (Balaji et al., 2022), we now show that this
choice additionally increases the flexibility of our MM-DiT-
based rectified flow during inference. As described in Ap-
pendix B.3 we train our model with three text encoders, with
an individual drop-out rate of 46.3%. Hence, at inference

11

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Figure 8. Quantitative effects of scaling. We analyze the impact of model size on performance, maintaining consistent training
hyperparameters throughout. An exception is depth=38, where learning rate adjustments at 3 × 105 steps were necessary to prevent
divergence. (Top) Validation loss smoothly decreases as a function of both model size and training steps for both image (columns 1 and 2)
and video models (columns 3 and 4). (Bottom) Validation loss is a strong predictor of overall model performance. There is a marked
correlation between validation loss and holistic image evaluation metrics, including GenEval (Ghosh et al., 2023), column 1, human
preference, column 2, and T2I-CompBench (Huang et al., 2023), column 3. For video models we observe a similar correlation between
validation loss and human preference, column 4. .

All text-encoders w/o T5 (Raffel et al., 2019)

“A burger patty, with the bottom bun and lettuce and tomatoes. ”COFFEE” written on it in mustard”

“A monkey holding a sign reading ”Scaling transformer models is awesome!”

“A mischievous ferret with a playful grin squeezes itself into a large glass jar, surrounded by
colorful candy. The jar sits on a wooden table in a cozy kitchen, and warm sunlight filters

through a nearby window”

Figure 9. Impact of T5. We observe T5 to be important for com-
plex prompts e.g. such involving a high degree of detail or longer
spelled text (rows 2 and 3). For most prompts, however, we find
that removing T5 at inference time still achieves competitive per-
formance.

time, we can use an arbitrary subset of all three text encoders.
This offers means for trading off model performance for im-
proved memory efficiency, which is particularly relevant
for the 4.7B parameters of T5-XXL (Raffel et al., 2019)
that require significant amounts of VRAM. Interestingly, we
observe limited performance drops when using only the two
CLIP-based text-encoders for the text prompts and replac-
ing the T5 embeddings by zeros. We provide a qualitative
visualization in Figure 9. Only for complex prompts involv-

ing either highly detailed descriptions of a scene or larger
amounts of written text do we find significant performance
gains when using all three text-encoders. These observa-
tions are also verified in the human preference evaluation
results in Figure 7 (Ours w/o T5). Removing T5 has no
effect on aesthetic quality ratings (50% win rate), and only a
small impact on prompt adherence (46% win rate), whereas
its contribution to the capabilities of generating written text
are more significant (38% win rate).

6. Conclusion
In this work, we presented a scaling analysis of rectified
flow models for text-to-image synthesis. We proposed a
novel timestep sampling for rectified flow training that im-
proves over previous diffusion training formulations for
latent diffusion models and retains the favourable proper-
ties of rectified flows in the few-step sampling regime. We
also demonstrated the advantages of our transformer-based
MM-DiT architecture that takes the multi-modal nature of
the text-to-image task into account. Finally, we performed
a scaling study of this combination up to a model size of
8B parameters and 5 × 1022 training FLOPs. We showed
that validation loss improvements correlate with both exist-
ing text-to-image benchmarks as well as human preference
evaluations. This, in combination with our improvements in
generative modeling and scalable, multimodal architectures
achieves performance that is competitive with state-of-the-
art proprietary models. The scaling trend shows no signs of
saturation, which makes us optimistic that we can continue
to improve the performance of our models in the future.

12

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Broader Impact
This paper presents work whose goal is to advance the field
of machine learning in general and image synthesis in par-
ticular. There are many potential societal consequences
of our work, none of which we feel must be specifically
highlighted here. For an extensive discussion of the gen-
eral ramifications of diffusion models, we point interested
readers towards (Po et al., 2023).

References
Ideogram v1.0 announcement, 2024. URL https://ab
out.ideogram.ai/1.0.

Playground v2.5 announcement, 2024. URL https://bl
og.playgroundai.com/playground-v2-5/.

Albergo, M. S. and Vanden-Eijnden, E. Building normaliz-
ing flows with stochastic interpolants, 2022.

Atchison, J. and Shen, S. M. Logistic-normal distributions:
Some properties and uses. Biometrika, 67(2):261–272,
1980.

autofaiss. autofaiss, 2023. URL https://github.c
om/criteo/autofaiss.

Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Zhang,
Q., Kreis, K., Aittala, M., Aila, T., Laine, S., Catanzaro,
B., Karras, T., and Liu, M.-Y. ediff-i: Text-to-image
diffusion models with an ensemble of expert denoisers,
2022.

Betker, J., Goh, G., Jing, L., Brooks, T., Wang, J., Li, L.,
Ouyang, L., Zhuang, J., Lee, J., Guo, Y., et al. Improving
image generation with better captions. Computer Science.
https://cdn. openai. com/papers/dall-e-3. pdf, 2(3), 2023.

Blattmann, A., Dockhorn, T., Kulal, S., Mendelevitch, D.,
Kilian, M., Lorenz, D., Levi, Y., English, Z., Voleti, V.,
Letts, A., et al. Stable video diffusion: Scaling latent
video diffusion models to large datasets. arXiv preprint
arXiv:2311.15127, 2023a.

Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim,
S. W., Fidler, S., and Kreis, K. Align your latents: High-
resolution video synthesis with latent diffusion models,
2023b.

Brooks, T., Holynski, A., and Efros, A. A. Instructpix2pix:
Learning to follow image editing instructions. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18392–18402, 2023.

Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag,
V., Tramer, F., Balle, B., Ippolito, D., and Wallace, E.
Extracting training data from diffusion models. In 32nd

USENIX Security Symposium (USENIX Security 23), pp.
5253–5270, 2023.

Carreira, J. and Zisserman, A. Quo vadis, action recogni-
tion? a new model and the kinetics dataset, 2018.

Changpinyo, S., Sharma, P. K., Ding, N., and Soricut,
R. Conceptual 12m: Pushing web-scale image-text pre-
training to recognize long-tail visual concepts. 2021
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 3557–3567, 2021. URL
https://api.semanticscholar.org/Corp
usID:231951742.

Chen, D., Chou, C., Xu, Y., and Hseu, J. Bfloat16: The
secret to high performance on cloud tpus, 2019. URL
https://cloud.google.com/blog/produc
ts/ai-machine-learning/bfloat16-the-
secret-to-high-performance-on-cloud-
tpus?hl=en.

Chen, J., Yu, J., Ge, C., Yao, L., Xie, E., Wu, Y., Wang,
Z., Kwok, J., Luo, P., Lu, H., and Li, Z. Pixart-a: Fast
training of diffusion transformer for photorealistic text-
to-image synthesis, 2023.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Neural
Information Processing Systems, 2018. URL https:
//api.semanticscholar.org/CorpusID:49
310446.

Cherti, M., Beaumont, R., Wightman, R., Wortsman, M.,
Ilharco, G., Gordon, C., Schuhmann, C., Schmidt, L.,
and Jitsev, J. Reproducible scaling laws for contrastive
language-image learning. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2023. doi: 10.1109/cvpr52729.2023.00276. URL
http://dx.doi.org/10.1109/CVPR52729.2
023.00276.

Dai, X., Hou, J., Ma, C.-Y., Tsai, S., Wang, J., Wang, R.,
Zhang, P., Vandenhende, S., Wang, X., Dubey, A., Yu, M.,
Kadian, A., Radenovic, F., Mahajan, D., Li, K., Zhao, Y.,
Petrovic, V., Singh, M. K., Motwani, S., Wen, Y., Song,
Y., Sumbaly, R., Ramanathan, V., He, Z., Vajda, P., and
Parikh, D. Emu: Enhancing image generation models
using photogenic needles in a haystack, 2023.

Dao, Q., Phung, H., Nguyen, B., and Tran, A. Flow match-
ing in latent space, 2023.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A., Caron, M., Geirhos, R.,
Alabdulmohsin, I., Jenatton, R., Beyer, L., Tschannen,
M., Arnab, A., Wang, X., Riquelme, C., Minderer, M.,
Puigcerver, J., Evci, U., Kumar, M., van Steenkiste, S.,

13

https://about.ideogram.ai/1.0
https://about.ideogram.ai/1.0
https://blog.playgroundai.com/playground-v2-5/
https://blog.playgroundai.com/playground-v2-5/
https://github.com/criteo/autofaiss
https://github.com/criteo/autofaiss
https://api.semanticscholar.org/CorpusID:231951742
https://api.semanticscholar.org/CorpusID:231951742
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus?hl=en
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus?hl=en
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus?hl=en
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus?hl=en
https://api.semanticscholar.org/CorpusID:49310446
https://api.semanticscholar.org/CorpusID:49310446
https://api.semanticscholar.org/CorpusID:49310446
http://dx.doi.org/10.1109/CVPR52729.2023.00276
http://dx.doi.org/10.1109/CVPR52729.2023.00276

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Elsayed, G. F., Mahendran, A., Yu, F., Oliver, A., Huot,
F., Bastings, J., Collier, M. P., Gritsenko, A., Birodkar,
V., Vasconcelos, C., Tay, Y., Mensink, T., Kolesnikov,
A., Pavetić, F., Tran, D., Kipf, T., Lučić, M., Zhai, X.,
Keysers, D., Harmsen, J., and Houlsby, N. Scaling vision
transformers to 22 billion parameters, 2023.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis, 2021.

Dockhorn, T., Vahdat, A., and Kreis, K. Score-based gener-
ative modeling with critically-damped langevin diffusion.
arXiv preprint arXiv:2112.07068, 2021.

Dockhorn, T., Vahdat, A., and Kreis, K. Genie: Higher-
order denoising diffusion solvers, 2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. ICLR,
2020.

Esser, P., Chiu, J., Atighehchian, P., Granskog, J., and Ger-
manidis, A. Structure and content-guided video synthesis
with diffusion models, 2023.

Euler, L. Institutionum calculi integralis. Number Bd. 1 in
Institutionum calculi integralis. imp. Acad. imp. Saènt.,
1768. URL https://books.google.de/book
s?id=Vg8OAAAAQAAJ.

Fischer, J. S., Gui, M., Ma, P., Stracke, N., Baumann, S. A.,
and Ommer, B. Boosting latent diffusion with flow match-
ing. arXiv preprint arXiv:2312.07360, 2023.

Ghosh, D., Hajishirzi, H., and Schmidt, L. Geneval: An
object-focused framework for evaluating text-to-image
alignment. arXiv preprint arXiv:2310.11513, 2023.

Gupta, A., Yu, L., Sohn, K., Gu, X., Hahn, M., Fei-Fei, L.,
Essa, I., Jiang, L., and Lezama, J. Photorealistic video
generation with diffusion models, 2023.

Hessel, J., Holtzman, A., Forbes, M., Le Bras, R., and
Choi, Y. Clipscore: A reference-free evaluation metric for
image captioning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2021. doi:
10.18653/v1/2021.emnlp-main.595. URL http://dx
.doi.org/10.18653/v1/2021.emnlp-main
.595.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium, 2017.

Ho, J. and Salimans, T. Classifier-free diffusion guidance,
2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models, 2020.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko,
A., Kingma, D. P., Poole, B., Norouzi, M., Fleet, D. J.,
and Salimans, T. Imagen video: High definition video
generation with diffusion models, 2022.

Hoogeboom, E., Heek, J., and Salimans, T. Simple diffusion:
End-to-end diffusion for high resolution images, 2023.

Huang, K., Sun, K., Xie, E., Li, Z., and Liu, X. T2i-
compbench: A comprehensive benchmark for open-world
compositional text-to-image generation. arXiv preprint
arXiv:2307.06350, 2023.

Hyvärinen, A. Estimation of non-normalized statistical
models by score matching. J. Mach. Learn. Res., 6:695–
709, 2005. URL https://api.semanticschola
r.org/CorpusID:1152227.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models,
2020.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
ArXiv, abs/2206.00364, 2022. URL https://api.se
manticscholar.org/CorpusID:249240415.

Karras, T., Aittala, M., Lehtinen, J., Hellsten, J., Aila,
T., and Laine, S. Analyzing and improving the train-
ing dynamics of diffusion models. arXiv preprint
arXiv:2312.02696, 2023.

Kingma, D. P. and Gao, R. Understanding diffusion ob-
jectives as the elbo with simple data augmentation. In
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D.,
Callison-Burch, C., and Carlini, N. Deduplicating train-
ing data makes language models better. arXiv preprint
arXiv:2107.06499, 2021.

Lee, S., Kim, B., and Ye, J. C. Minimizing trajectory curva-
ture of ode-based generative models, 2023.

Lin, S., Liu, B., Li, J., and Yang, X. Common diffusion noise
schedules and sample steps are flawed. In Proceedings
of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 5404–5411, 2024.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft COCO:
Common Objects in Context, pp. 740–755. Springer In-
ternational Publishing, 2014. ISBN 9783319106021. doi:

14

https://books.google.de/books?id=Vg8OAAAAQAAJ
https://books.google.de/books?id=Vg8OAAAAQAAJ
http://dx.doi.org/10.18653/v1/2021.emnlp-main.595
http://dx.doi.org/10.18653/v1/2021.emnlp-main.595
http://dx.doi.org/10.18653/v1/2021.emnlp-main.595
https://api.semanticscholar.org/CorpusID:1152227
https://api.semanticscholar.org/CorpusID:1152227
https://api.semanticscholar.org/CorpusID:249240415
https://api.semanticscholar.org/CorpusID:249240415

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

10.1007/978-3-319-10602-1 48. URL http://dx.d
oi.org/10.1007/978-3-319-10602-1 48.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The
Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net
/forum?id=PqvMRDCJT9t.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow,
2022.

Liu, X., Zhang, X., Ma, J., Peng, J., and Liu, Q. Instaflow:
One step is enough for high-quality diffusion-based text-
to-image generation, 2023.

Loshchilov, I. and Hutter, F. Fixing weight decay regular-
ization in adam. ArXiv, abs/1711.05101, 2017. URL
https://api.semanticscholar.org/Corp
usID:3312944.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. Dpm-
solver++: Fast solver for guided sampling of diffusion
probabilistic models, 2023.

Ma, N., Goldstein, M., Albergo, M. S., Boffi, N. M., Vanden-
Eijnden, E., and Xie, S. Sit: Exploring flow and diffusion-
based generative models with scalable interpolant trans-
formers, 2024.

Nichol, A. Dall-e 2 pre-training mitigations. https:
//openai.com/research/dall-e-2-pre-t
raining-mitigations, 2022.

Nichol, A. and Dhariwal, P. Improved denoising diffusion
probabilistic models, 2021.

NovelAI. Novelai improvements on stable diffusion, 2022.
URL https://blog.novelai.net/novelai
-improvements-on-stable-diffusion-e1
0d38db82ac.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In 2023 IEEE/CVF International Con-
ference on Computer Vision (ICCV). IEEE, 2023. doi:
10.1109/iccv51070.2023.00387. URL http://dx.d
oi.org/10.1109/ICCV51070.2023.00387.

Pernias, P., Rampas, D., Richter, M. L., Pal, C. J., and
Aubreville, M. Wuerstchen: An efficient architecture for
large-scale text-to-image diffusion models, 2023.

Pizzi, E., Roy, S. D., Ravindra, S. N., Goyal, P., and Douze,
M. A self-supervised descriptor for image copy detection.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 14532–14542,
2022.

Po, R., Yifan, W., Golyanik, V., Aberman, K., Barron, J. T.,
Bermano, A. H., Chan, E. R., Dekel, T., Holynski, A.,
Kanazawa, A., et al. State of the art on diffusion models
for visual computing. arXiv preprint arXiv:2310.07204,
2023.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn,
T., Müller, J., Penna, J., and Rombach, R. Sdxl: Im-
proving latent diffusion models for high-resolution image
synthesis, 2023.

Pooladian, A.-A., Ben-Hamu, H., Domingo-Enrich, C.,
Amos, B., Lipman, Y., and Chen, R. T. Q. Multisam-
ple flow matching: Straightening flows with minibatch
couplings, 2023.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision, 2021.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Man-
ning, C. D., and Finn, C. Direct Preference Optimiza-
tion: Your Language Model is Secretly a Reward Model.
arXiv:2305.18290, 2023.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer, 2019.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE,
2022. doi: 10.1109/cvpr52688.2022.01042. URL
http://dx.doi.org/10.1109/CVPR52688.2
022.01042.

Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation, pp.
234–241. Springer International Publishing, 2015. ISBN
9783319245744. doi: 10.1007/978-3-319-24574-4 28.
URL http://dx.doi.org/10.1007/978-3-3
19-24574-4 28.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M. S., Berg, A. C., and Fei-Fei, L. Imagenet large scale
visual recognition challenge. International Journal of
Computer Vision, 115:211 – 252, 2014. URL https:
//api.semanticscholar.org/CorpusID:29
30547.

15

http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://api.semanticscholar.org/CorpusID:3312944
https://api.semanticscholar.org/CorpusID:3312944
https://openai.com/research/dall-e-2-pre-training-mitigations
https://openai.com/research/dall-e-2-pre-training-mitigations
https://openai.com/research/dall-e-2-pre-training-mitigations
https://blog.novelai.net/novelai-improvements-on-stable-diffusion-e10d38db82ac
https://blog.novelai.net/novelai-improvements-on-stable-diffusion-e10d38db82ac
https://blog.novelai.net/novelai-improvements-on-stable-diffusion-e10d38db82ac
http://dx.doi.org/10.1109/ICCV51070.2023.00387
http://dx.doi.org/10.1109/ICCV51070.2023.00387
http://dx.doi.org/10.1109/CVPR52688.2022.01042
http://dx.doi.org/10.1109/CVPR52688.2022.01042
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
https://api.semanticscholar.org/CorpusID:2930547
https://api.semanticscholar.org/CorpusID:2930547
https://api.semanticscholar.org/CorpusID:2930547

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans,
T., Fleet, D., and Norouzi, M. Palette: Image-to-image
diffusion models. In ACM SIGGRAPH 2022 Conference
Proceedings, pp. 1–10, 2022a.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi,
S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J.,
and Norouzi, M. Photorealistic text-to-image diffusion
models with deep language understanding, 2022b.

Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J.,
and Norouzi, M. Image super-resolution via iterative
refinement. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(4):4713–4726, 2022c.

Sauer, A., Chitta, K., Müller, J., and Geiger, A. Projected
gans converge faster. Advances in Neural Information
Processing Systems, 2021.

Sauer, A., Lorenz, D., Blattmann, A., and Rombach,
R. Adversarial diffusion distillation. arXiv preprint
arXiv:2311.17042, 2023.

Sheynin, S., Polyak, A., Singer, U., Kirstain, Y., Zohar, A.,
Ashual, O., Parikh, D., and Taigman, Y. Emu edit: Precise
image editing via recognition and generation tasks. arXiv
preprint arXiv:2311.10089, 2023.

Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang,
S., Hu, Q., Yang, H., Ashual, O., Gafni, O., Parikh, D.,
Gupta, S., and Taigman, Y. Make-a-video: Text-to-video
generation without text-video data, 2022.

Sohl-Dickstein, J. N., Weiss, E. A., Maheswaranathan,
N., and Ganguli, S. Deep unsupervised learning using
nonequilibrium thermodynamics. ArXiv, abs/1503.03585,
2015. URL https://api.semanticscholar.
org/CorpusID:14888175.

Somepalli, G., Singla, V., Goldblum, M., Geiping, J., and
Goldstein, T. Diffusion art or digital forgery? investigat-
ing data replication in diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6048–6058, 2023a.

Somepalli, G., Singla, V., Goldblum, M., Geiping, J., and
Goldstein, T. Understanding and mitigating copying
in diffusion models. arXiv preprint arXiv:2305.20086,
2023b.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models, 2022.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution, 2020.

Song, Y., Sohl-Dickstein, J. N., Kingma, D. P., Kumar,
A., Ermon, S., and Poole, B. Score-based generative
modeling through stochastic differential equations. ArXiv,
abs/2011.13456, 2020. URL https://api.semant
icscholar.org/CorpusID:227209335.

Tong, A., Malkin, N., Huguet, G., Zhang, Y., Rector-Brooks,
J., Fatras, K., Wolf, G., and Bengio, Y. Improving and
generalizing flow-based generative models with mini-
batch optimal transport, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2017.

Villani, C. Optimal transport: Old and new. 2008. URL
https://api.semanticscholar.org/Corp
usID:118347220.

Vincent, P. A connection between score matching and de-
noising autoencoders. Neural Computation, 23:1661–
1674, 2011. URL https://api.semanticscho
lar.org/CorpusID:5560643.

Wallace, B., Dang, M., Rafailov, R., Zhou, L., Lou, A., Pu-
rushwalkam, S., Ermon, S., Xiong, C., Joty, S., and Naik,
N. Diffusion Model Alignment Using Direct Preference
Optimization. arXiv:2311.12908, 2023.

Wang, W., Lv, Q., Yu, W., Hong, W., Qi, J., Wang, Y., Ji,
J., Yang, Z., Zhao, L., Song, X., et al. Cogvlm: Visual
expert for pretrained language models. arXiv preprint
arXiv:2311.03079, 2023.

Wortsman, M., Liu, P. J., Xiao, L., Everett, K., Alemi, A.,
Adlam, B., Co-Reyes, J. D., Gur, I., Kumar, A., Novak,
R., Pennington, J., Sohl-dickstein, J., Xu, K., Lee, J.,
Gilmer, J., and Kornblith, S. Small-scale proxies for
large-scale transformer training instabilities, 2023.

Yu, J., Xu, Y., Koh, J. Y., Luong, T., Baid, G., Wang, Z., Va-
sudevan, V., Ku, A., Yang, Y., Ayan, B. K., et al. Scaling
Autoregressive Models for Content-Rich Text-to-Image
Generation. arXiv:2206.10789, 2022.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling
vision transformers. In CVPR, pp. 12104–12113, 2022.

Zhang, B. and Sennrich, R. Root mean square layer normal-
ization, 2019.

16

https://api.semanticscholar.org/CorpusID:14888175
https://api.semanticscholar.org/CorpusID:14888175
https://api.semanticscholar.org/CorpusID:227209335
https://api.semanticscholar.org/CorpusID:227209335
https://api.semanticscholar.org/CorpusID:118347220
https://api.semanticscholar.org/CorpusID:118347220
https://api.semanticscholar.org/CorpusID:5560643
https://api.semanticscholar.org/CorpusID:5560643

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Supplementary

A. Background
Diffusion Models (Sohl-Dickstein et al., 2015; Song et al., 2020; Ho et al., 2020) generate data by approximating the
reverse ODE to a stochastic forward process which transforms data to noise. They have become the standard approach for
generative modeling of images (Dhariwal & Nichol, 2021; Ramesh et al., 2022; Saharia et al., 2022b; Rombach et al., 2022;
Balaji et al., 2022) and videos (Singer et al., 2022; Ho et al., 2022; Esser et al., 2023; Blattmann et al., 2023b; Gupta et al.,
2023). Since these models can be derived both via a variational lower bound on the negative likelihood (Sohl-Dickstein et al.,
2015) and score matching (Hyvärinen, 2005; Vincent, 2011; Song & Ermon, 2020), various formulations of forward- and
reverse processes (Song et al., 2020; Dockhorn et al., 2021), model parameterizations (Ho et al., 2020; Ho & Salimans, 2022;
Karras et al., 2022), loss weightings (Ho et al., 2020; Karras et al., 2022) and ODE solvers (Song et al., 2022; Lu et al., 2023;
Dockhorn et al., 2022) have led to a large number of different training objectives and sampling procedures. More recently,
the seminal works of Kingma & Gao (2023) and Karras et al. (2022) have proposed unified formulations and introduced
new theoretical and practical insights for training (Karras et al., 2022; Kingma & Gao, 2023) and inference (Karras et al.,
2022). However, despite these improvements, the trajectories of common ODEs involve partly significant amounts of
curvature (Karras et al., 2022; Liu et al., 2022), which requires increased amounts of solver steps and, thus, renders fast
inference difficult. To overcome this, we adopt rectified flow models whose formulation allows for learning straight ODE
trajectories.

Rectified Flow Models (Liu et al., 2022; Albergo & Vanden-Eijnden, 2022; Lipman et al., 2023) approach generative
modeling by constructing a transport map between two distributions through an ordinary differential equation (ODE). This
approach has close connections to continuous normalizing flows (CNF) (Chen et al., 2018) as well as diffusion models.
Compared to CNFs, Rectified Flows and Stochastic Interpolants have the advantage that they do not require simulation
of the ODE during training. Compared to diffusion models, they can result in ODEs that are faster to simulate than the
probability flow ODE (Song et al., 2020) associated with diffusion models. Nevertheless, they do not result in optimal
transport solutions, and multiple works aim to minimize the trajectory curvature further (Lee et al., 2023; Tong et al., 2023;
Pooladian et al., 2023). (Dao et al., 2023; Ma et al., 2024) demonstrate the feasibility of rectified flow formulations for
class-conditional image synthesis, (Fischer et al., 2023) for latent-space upsampling, and (Liu et al., 2023) apply the reflow
procedure of (Liu et al., 2022) to distill a pretrained text-to-image model (Rombach et al., 2022). Here, we are interested in
rectified flows as the foundation for text-to-image synthesis with fewer sampling steps. We perform an extensive comparison
between different formulations and loss weightings and propose a new timestep schedule for training of rectified flows with
improved performance.

Scaling Diffusion Models The transformer architecture (Vaswani et al., 2017) is well known for its scaling properties in
NLP (Kaplan et al., 2020) and computer vision tasks (Dosovitskiy et al., 2020; Zhai et al., 2022). For diffusion models,
U-Net architectures (Ronneberger et al., 2015) have been the dominant choice (Ho et al., 2020; Rombach et al., 2022; Balaji
et al., 2022). While some recent works explore diffusion transformer backbones (Peebles & Xie, 2023; Chen et al., 2023;
Ma et al., 2024), scaling laws for text-to-image diffusion models remain unexplored.

17

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Detailed pen and ink drawing of a happy pig butcher selling meat in its shop. a massive alien space ship that is shaped like a pretzel.

A kangaroo holding a beer,
wearing ski goggles and
passionately singing silly

songs.

An entire universe inside a
bottle sitting on the shelf at

walmart on sale.

A cheesburger surfing the
vibe wave at night

A swamp ogre with a pearl
earring by Johannes Vermeer

A car made out of
vegetables.

heat death of the universe,
line art

A crab made of cheese on a plate Dystopia of thousand of workers picking cherries and feeding them into a machine that runs on
steam and is as large as a skyscraper. Written on the side of the machine: ”SD3 Paper”

translucent pig, inside is a smaller pig. Film still of a long-legged cute big-eye anthropomorphic cheeseburger wearing sneakers relaxing on
the couch in a sparsely decorated living room.

18

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

detailed pen and ink drawing of a massive complex alien space ship above a farm in the middle of
nowhere.

photo of a bear wearing a suit and tophat in a river in the middle of a forest holding a sign that says
”I cant bear it”.

tilt shift aerial photo of a cute city made of sushi on a wooden table in the evening. dark high contrast render of a psychedelic tree of life illuminating dust in a mystical cave.

an anthropomorphic fractal person behind the counter at a fractal themed restaurant. beautiful oil painting of a steamboat in a river in the afternoon. On the side of the river is a large
brick building with a sign on top that says S̈D3.̈

an anthopomorphic pink donut with a mustache and cowboy hat standing by a log cabin in a forest
with an old 1970s orange truck in the driveway

fox sitting in front of a computer in a messy room at night. On the screen is a 3d modeling program
with a line render of a zebra.

19

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

B. On Flow Matching
B.1. Details on Simulation-Free Training of Flows

Following (Lipman et al., 2023), to see that ut(z) generates pt, we note that the continuity equation provides a necessary
and sufficient condition (Villani, 2008):

d

dt
pt(x) +∇ · [pt(x)vt(x)] = 0↔ vt generates probability density path pt. (26)

Therefore it suffices to show that

−∇ · [ut(z)pt(z)] = −∇ · [Eε∼N (0,I)ut(z|ε)
pt(z|ε)
pt(z)

pt(z)] (27)

= Eε∼N (0,I) −∇ · [ut(z|ε)pt(z|ε)] (28)

= Eε∼N (0,I)
d

dt
pt(z|ε) =

d

dt
pt(z), (29)

where we used the continuity equation Equation (26) for ut(z|ε) in line Equation (28) to Equation (29) since ut(z|ε)
generates pt(z|ε) and the definition of Equation (6) in line Equation (27)

The equivalence of objectives LFM � LCFM (Lipman et al., 2023) follows from

LFM (Θ) = Et,pt(z)||vΘ(z, t)− ut(z)||22 (30)

= Et,pt(z)||vΘ(z, t)||22 − 2Et,pt(z)〈vΘ(z, t) |ut(z)〉+ c (31)

= Et,pt(z)||vΘ(z, t)||22 − 2Et,pt(z|ε),p(ε)〈vΘ(z, t) |ut(z|ε)〉+ c (32)

= Et,pt(z|ε),p(ε)||vΘ(z, t)− ut(z|ε)||22 + c′ = LCFM (Θ) + c′ (33)

where c, c′ do not depend on Θ and line Equation (31) to line Equation (32) follows from:

Ept(z|ε),p(ε)〈vΘ(z, t) |ut(z|ε)〉 =

∫
dz

∫
dεpt(z|ε)p(ε)〈vΘ(z, t) |ut(z|ε)〉 (34)

=

∫
dzpt(z)〈vΘ(z, t) |

∫
dε
pt(z|ε)
pt(z)

p(ε)ut(z|ε)〉 (35)

=

∫
dzpt(z)〈vΘ(z, t) |ut(z)〉 = Ept(z)〈vΘ(z, t) |ut(z)〉 (36)

where we extended with pt(z)
pt(z)

in line Equation (35) and used the definition of Equation (6) in line Equation (35) to
Equation (36).

B.2. Details on Image and Text Representations

Latent Image Representation We follow LDM (Rombach et al., 2022) and use a pretrained autoencoder to represent RGB
images X ∈ RH×W×3 in a smaller latent space x = E(X) ∈ Rh×w×d. We use a spatial downsampling factor of 8, such
that h = H

8 and w = W
8 , and experiment with different values for d in Section 5.2.1. We always apply the forward process

from Equation 2 in the latent space, and when sampling a representation x via Equation 1, we decode it back into pixel
space X = D(x) via the decoder D. We follow Rombach et al. (2022) and normalize the latents by their mean and standard
deviation, which are globally computed over a subset of the training data. Figure 10 shows how generative model training
for different d evolves as a function of model capacity, as discussed in Section 5.2.1.

Text Representation Similar to the encoding of images to latent representations, we also follow previous approaches
(Saharia et al., 2022b; Balaji et al., 2022) and encode the text conditioning c using pretrained, frozen text models. In
particular, for all experiments, we use a combination of CLIP (Radford et al., 2021) models and a encoder-decoder text model.
Specifically, we encode c with the text encoders of both a CLIP L/14 model of Radford et al. (2021) as well as an OpenCLIP
bigG/14 model of Cherti et al. (2023). We concatenate the pooled outputs, of sizes 768 and 1280 respectively, to obtain
a vector conditioning cvec ∈ R2048. We also concatenate the penultimate hidden representations channel-wise to a CLIP

20

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Figure 10. FID scores after training flow models with different sizes (parameterized via their depth) on the latent space of different
autoencoders (4 latent channels, 8 channels and 16 channels) as discussed in Section 5.2.1. As expected, the flow model trained on the
16-channel autoencoder space needs more model capacity to achieve similar performance. At depth d = 22, the gap between 8-chn and
16-chn becomes negligible. We opt for the 16-chn model as we ultimately aim to scale to much larger model sizes.

context conditioning cCLIP
ctxt ∈ R77×2048. Next, we encode c also to the final hidden representation, cT5

ctxt ∈ R77×4096, of the
encoder of a T5-v1.1-XXL model (Raffel et al., 2019). Finally, we zero-pad cCLIP

ctxt along the channel axis to 4096 dimensions
to match the T5 representation and concatenate it along the sequence axis with cT5

ctxt to obtain the final context representation
cctxt ∈ R154×4096. These two caption representations, cvec and cctxt, are used in two different ways as described in Section 4.

B.3. Preliminaries for the Experiments in Section 5.1.

Datasets We use two datasets to account for the missing of a standard text-to-image benchmark. As a widely used dataset,
we convert the ImageNet dataset (Russakovsky et al., 2014) into a dataset suitable for text-to-image models by adding
captions of the form “a photo of a 〈class name〉” to images, where 〈class name〉 is randomly chosen from one
of the provided names for the image’s class label. As a more realistic text-to-image dataset, we use the CC12M dataset
(Changpinyo et al., 2021) for training.

Optimization In this experiment, we train all models using a global batch size of 1024 using the AdamW optimizer
(Loshchilov & Hutter, 2017) with a learning rate of 10−4 and 1000 linear warmup steps. We use mixed-precision training
and keep a copy of the model weights which gets updated every 100 training batches with an exponential moving average
(EMA) using a decay factor of 0.99. For unconditional diffusion guidance (Ho & Salimans, 2022), we set the outputs of each
of the three text encoders independently to zero with a probability of 46.4%, such that we roughly train an unconditional
model in 10% of all steps.

Evaluation As described in Section 5.1, we use CLIP scores, FID and validation losses to evaluate our models regularly
during training on the COCO-2014 validation split (Lin et al., 2014).

As the loss values differ widely in magnitude and variance for different timesteps, we evaluate them in a stratified way on
eight equally spaced values in the time interval [0, 1].

To analyze how different approaches behave under different sampler settings, we produce 1000 samples for each of the
samplers which differ in guidance scales as well as number of sampling steps. We evaluate these samples with CLIP scores
using CLIP L/14 (Radford et al., 2021) and also compute FID between CLIP L/14 image features of these samples and the
images of the validation set. For sampling, we always use a Euler discretization (Euler, 1768) of Equation 1 and six different
settings: 50 steps with classifier-free-guidance scales 1.0, 2.5, 5.0, and 5, 10, 25 steps with classifier-free-guidance scale 5.0.

B.4. Improving SNR Samplers for Rectified Flow Models

As described in Section 2, we introduce novel densities π(t) for the timesteps that we use to train our rectified flow models.
Figure 11 visualizes the distributions of the logit-normal sampler and the mode sampler introduced in Section 3.1. Notably,
as we demonstrate in Section 5.1, the logit-normal sampler outperforms the classic uniform rectified flow formulation (Liu
et al., 2022) and established diffusion baselines such as EDM (Karras et al., 2022) and LDM-Linear (Rombach et al., 2022).

21

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Figure 11. The mode (left) and logit-normal (right) distributions that we explore for biasing the sampling of training timesteps.

“A raccoon wearing formal clothes, wearing a
tophat and holding a cane. The raccoon is
holding a garbage bag. Oil painting in the

style of abstract cubism.”

“A bowl of soup that looks like a monster
made out of plasticine”

“Two cups of coffee, one with latte art of a
heart. The other has latte art of stars.”

“A smiling sloth is wearing a leather jacket, a
cowboy hat, a kilt and a bowtie. The sloth is
holding a quarterstaff and a big book. The

sloth is standing on grass a few feet in front of
a shiny VW van with flowers painted on it.

wide-angle lens from below.”
Figure 12. Qualitative effects of scaling. Displayed are examples demonstrating the impact of scaling training steps (left to right: 50k,
200k, 350k, 500k) and model sizes (top to bottom: depth=15, 30, 38) on PartiPrompts, highlighting the influence of training duration and
model complexity.

22

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

C. Direct Preference Optimization
“a peaceful lakeside landscape with

migrating herd of sauropods”
“a book with the words ‘Don’t Panic¡,

written on it”

2B
ba

se
2B

w
/D

PO
8b

ba
se

8b
w

/D
PO

Figure 13. Comparison between base models and DPO-finetuned models. DPO-finetuning generally results in more aesthetically pleasing
samples with better spelling.

Direct Preference Optimization (DPO) (Rafailov et al., 2023) is a technique to finetune LLMs with preference data. Recently,
this method has been adapted to preference finetuning of text-to-image diffusion models (Wallace et al., 2023). In this
section, we verify that our model is also amenable to preference optimization. In particular, we apply the method introduced
in Wallace et al. (2023) to our 2B and 8B parameter base model. Rather than finetuning the entire model, we introduce
learnable Low-Rank Adaptation (LoRA) matrices (of rank 128) for all linear layers as is common practice. We finetune
these new parameters for 4k and 2k iteration for the 2B and 8B base model, respectively. We then evaluate the resulting
model in a human preference study using a subset of 128 captions from the Partiprompts set (Yu et al., 2022) (roughly three
voter per prompt and comparison). Figure 14 shows that our base models can be effectively tuned for human preference.
Figure 13 shows samples of the respective base models and DPO-finetuned models.

D. Finetuning for instruction-based image editing
A common approach for training instruction based image editing and general image-to-image diffusion models is to
concatenate the latents of the input image to the noised latents of the diffusion target along the channel dimension before
feeding the input into a U-Net (Brooks et al., 2023; Sheynin et al., 2023; Saharia et al., 2022a;c). We follow the same
approach, concatenating input and target along the channels before patching, and demonstrate that the same method is
applicable to our proposed architecture. We finetune the 2B parameter base model on a dataset consisting of image-to-image
editing tasks similar to the distribution of the InstructPix2Pix dataset (Brooks et al., 2023) as well as inpainting, segmentation,
colorization, deblurring and controlnet tasks similar to Emu Edit and Palette (Sheynin et al., 2023; Saharia et al., 2022a).
As shown in Fig 15 we observe that the resulting 2B Edit model has the capability to manipulate text in a given image, even

23

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Prompt Quality0

10

20

30

40

50

60
Hu

m
an

 P
re

fe
re

nc
e

[%
]

depth=24 (2B)
base
w/ DPO

Prompt Quality

depth=38 (8B)
base
w/ DPO

Figure 14. Human preference evaluation between base models and DPO-finetuned models. Human evaluators prefer DPO-finetuned
models for both prompt following and general quality.

Model Mem [GB] FP [ms] Storage [kB] Delta [%]

VAE (Enc) 0.14 2.45 65.5 13.8
CLIP-L 0.49 0.45 121.3 2.6
CLIP-G 2.78 2.77 202.2 15.6
T5 19.05 17.46 630.7 98.3

Table 7. Key figures for preencoding frozen input networks. Mem is the memory required to load the model on the GPU. FP [ms] is
the time per sample for the forward pass with per-device batch size of 32. Storage is the size to save a single sample. Delta [%] is how
much longer a training step takes, when adding this into the loop for the 2B MMDiT-Model (568ms/it).

though no text manipulation tasks were included in the training data. We were not able to reproduce similar results when
training a SDXL-based (Podell et al., 2023) editing model on the same data.

E. Data Preprocessing for Large-Scale Text-to-Image Training
E.1. Precomputing Image and Text Embeddings

Our model uses the output of multiple pretrained, frozen networks as inputs (autoencoder latents and text encoder repre-
sentations). Since these outputs are constant during training, we precompute them once for the entire dataset. This comes
with two main advantages: (i) The encoders do not need to be available on the GPU during training, lowering the required
memory. (ii) The forward encoding pass is skipped during training, saving time and total needed compute after the first
epoch, see Tab. 7.

This approach has two disadvantages: First, random augmentation for each sample every epoch is not possible and we use
square-center cropping during precomputation of image latents. For finetuning our model at higher resolutions, we specify
a number of aspect ratio buckets, and resize and crop to the closest bucket first and then precompute in that aspect ratio.
Second, the dense output of the text encoders is particularly large, creating additional storage cost and longer loading times
during training (c.f . Tab. 7). We save the embeddings of the language models in half precision, as we do not observe a
deterioration in performance in practice.

E.2. Preventing Image Memorization

In the context of generative image models memorization of training samples can lead to a number of issues (Somepalli et al.,
2023a; Carlini et al., 2023; Somepalli et al., 2023b). To avoid verbatim copies of images by our trained models, we carefully
scan our training dataset for duplicated examples and remove them.

24

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Input Output 1 Output 2

Write ”go small
go home”

instead

GO BIG OR GO UNET
is written on

the blackboard

change the
word to
UNOT

make the
sign say

MMDIT rules

Figure 15. Zero Shot Text manipulation and insertion with the 2B Edit model

Details on Deduplication In accordance with the methods outlined by Carlini et al. (2023) and Somepalli et al. (2023a),
we opt for SSCD (Pizzi et al., 2022) as the backbone for the deduplication process. The SSCD algorithm is a state-of-the-art
technique for detecting near-duplicate images at scale, and it generates high-quality image embeddings that can be used for
clustering and other downstream tasks. We also decided to follow Nichol (2022) to decide on a number of clusters N . For
our experiments, we use N = 16, 000.

We utilize autofaiss (2023) for clustering. autofaiss (2023) is a library that simplifies the process of using Faiss (Facebook AI
Similarity Search) for large-scale clustering tasks. Specifically, leverage FAISS index factory1 functionality to train a custom
index with predefined number of centroids. This approach allows for efficient and accurate clustering of high-dimensional
data, such as image embeddings.

Algorithm 1 details our deduplication approach. We ran an experiment to see how much data is removed by different SSCD
threshold as shown in Figure 16b. Based on these results we selected four thresholds for the final run Figure 16a.

1https://github.com/facebookresearch/faiss/wiki/The-index-factory

25

https://github.com/facebookresearch/faiss/wiki/The-index-factory

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

E.3. Assessing the Efficacy of our Deduplication Efforts

Carlini et al. (2023) devise a two-stage data extraction attack that generates images using standard approaches, and flags
those that exceed certain membership inference scoring criteria. Carlini et al. (2023) bias their search towards duplicated
training examples because these are orders of magnitude more likely to be memorized than non-duplicated examples
(Somepalli et al., 2023a;a; Lee et al., 2021).

To assess how well our SSCD-based deduplication works, we follow Carlini et al. (2023) to extract memorized samples from
small, specifically for this purpose trained models and compare them before and after deduplication. Two main step of the
mentioned procedure include: 1) Generate many examples using the diffusion model in the standard sampling manner and
with the known prompts. 2) Perform membership inference to separate the model’s novel generations from those generations
which are memorized training examples. Algorithm 2 shows the steps to find the memorized samples based on Carlini et al.
(2023). Note that we run this techniques two times; one for SD-2.1 model with only exact dedup removal as baseline, and
for a model with the SD2.1 architecture but trained on removed exact duplication and near-duplication using SSCD (Pizzi
et al., 2022).

We select the 350,000 most-duplicated examples from the training dataset based on SSCD (Pizzi et al., 2022) with threshold
of 0.5, and generate 500 candidate images for each text prompt to increase the likelihood of finding memorization. The
intuition is that for diffusion models, with high probability Gen(p; r1) ≈d Gen(p; r2) for two different random initial seeds
r1,r2. On the other hand, if Gen(p; r1) ≈d Gen(p; r2) under some distance measure d, it is likely that these generated
samples are memorized examples. To compute the distance measure d between two images, we use a modified Euclidean
l2 distance. In particular, we found that many generations were often spuriously similar according to l2 distance (e.g.,
they all had gray backgrounds). We therefore instead divide each image into 16 non-overlapping 128 × 128 tiles and
measure the maximum of the l2 distance between any pair of image tiles between the two images. Figure 17 shows the
comparison between number of memorized samples, before and after using SSCD with the threshold of 0.5 to remove
near-duplicated samples. Carlini et al. (2023) mark images within clique size of 10 as memorized samples. Here we
also explore different sizes for cliques. For all clique thresholds, SSCD is able to significantly reduce the number of
memorized samples. Specifically, when the clique size is 10, trained SD models on the deduplicated training samples cut off
at SSCD= 0.5 show a 5× reduction in potentially memorized examples.

Algorithm 1 Finding Duplicate Items in a Cluster

Require: vecs – List of vectors in a single cluster, items – List of item IDs corresponding to vecs, index – FAISS index
for similarity search within the cluster, thresh – Threshold for determining duplicates
Output: dups – Set of duplicate item IDs

1: dups← new set()
2: for i← 0 to length(vecs)− 1 do
3: qs← vecs[i] {Current vector}
4: qid← items[i] {Current item ID}
5: lims, D, I ← index.range search(qs, thresh)
6: if qid ∈ dups then
7: continue
8: end if
9: start← lims[0]

10: end← lims[1]
11: duplicate indices← I[start : end]
12: duplicate ids← new list()
13: for j in duplicate indices do
14: if items[j] 6= qid then
15: duplicate ids.append(items[j])
16: end if
17: end for
18: dups.update(duplicate ids)
19: end for
20: Return dups {Final set of duplicate IDs}

26

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

(a) Final result of SSCD deduplication over the entire dataset (b) Result of SSCD deduplication with various thresholds over 1000
random clusters

Figure 16. Results of deduplicating our training datasets for various filtering thresholds.

Algorithm 2 Detecting Memorization in Generated Images

Require: Set of prompts P , Number of generations per prompt N , Similarity threshold ε = 0.15, Memorization threshold
T

Ensure: Detection of memorized images in generated samples
1: Initialize D to the set of most-duplicated examples
2: for each prompt p ∈ P do
3: for i = 1 to N do
4: Generate image Gen(p; ri) with random seed ri
5: end for
6: end for
7: for each pair of generated images xi, xj do
8: if distance d(xi, xj) < ε then
9: Connect xi and xj in graph G

10: end if
11: end for
12: for each node in G do
13: Find largest clique containing the node
14: if size of clique ≥ T then
15: Mark images in the clique as memorized
16: end if
17: end for

27

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Figure 17. SSCD-based deduplication prevents memorization. To assess how well our SSCD-based deduplication works, we extract
memorized samples from small, specifically for this purpose trained models and compare them before and after deduplication. We plot a
comparison between number of memorized samples, before and after using SSCD with the threshold of 0.5 to remove near-duplicated
samples. Carlini et al. (2023) mark images within clique size of 10 as memorized samples. Here we also explore different sizes for cliques.
For all clique thresholds, SSCD is able to significantly reduce the number of memorized samples. Specifically, when the clique size is 10,
models on the deduplicated training samples cut off at SSCD= 0.5 show a 5× reduction in potentially memorized examples.

28

